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Abstract: The Advanced Metering Infrastructure (AMI) data represent a source of information in
real time not only about electricity consumption but also as an indicator of other social, demographic,
and economic dynamics within a city. This paper presents a Data Analytics/Big Data framework
applied to AMI data as a tool to leverage the potential of this data within the applications in a Smart
City. The framework includes three fundamental aspects. First, the architectural view places AMI
within the Smart Grids Architecture Model-SGAM. Second, the methodological view describes the
transformation of raw data into knowledge represented by the DIKW hierarchy and the NIST Big
Data interoperability model. Finally, a binding element between the two views is represented by
human expertise and skills to obtain a deeper understanding of the results and transform knowledge
into wisdom. Our new view faces the challenges arriving in energy markets by adding a binding
element that gives support for optimal and efficient decision-making. To show how our framework
works, we developed a case study. The case implements each component of the framework for a
load forecasting application in a Colombian Retail Electricity Provider (REP). The MAPE for some of
the REP’s markets was less than 5%. In addition, the case shows the effect of the binding element
as it raises new development alternatives and becomes a feedback mechanism for more assertive
decision making.

Keywords: advanced metering infrastructure; AMI data; big data; data analytics; SGAM; smart cities;
smart grids; smart meter

1. Introduction

One of the pillars of Smart Cities is the intensive use of information-based technologies.
Thus, big data and data analytics have become robust tools that support the development
of applications for actors involved in them. One of the most important actors is Smart
Grids, which enable data harvesting to implement an evolved and more efficient electrical
network. Adopting Advanced Metering Infrastructure (AMI) is geared toward promoting
tools available to quantify and measure the energy flow throughout the grid.

This infrastructure not only acts to provide information to the utility but it also enables
the customer as a stakeholder in the energy value chain. AMI data represent a source of
information in real time not only on electricity consumption but also potentially on pop-
ulation behaviors, such as concentrations of people, population migration, demographic
trends, and economic changes in various sectors of the population, among others [1].

The latest study published by Berg Insight on smart meter markets stated that the
three markets that lead the way in smart energy meter installation are Asia—Pacific, Eu-
rope, and the US. Studies expect that, in 2024, the Asia—Pacific market (i.e., China, Japan,
South Korea, India, Australia, and New Zealand) will reach 975 million smart meters,
USD 142.8 million [2], and Europe around 223 million [3]. Considering that a smart meter
can record information at minute intervals, the amount of information available is massive.
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Precisely this imminent arrival of large volumes of information means that the areas of Big
Data and Data Analytics are required tools to explore and analyze such data.

In this regard, several authors have worked on different applications that seek to
extract value from these raw data available from smart meters or AMI assets. Among the
most common topics that involve advanced analytic techniques and big data in AMI data,
we can highlight:

e AMI data processing tools and their integration with emerging technologies. This
group includes work related to platforms for storing and running analytic using
different applications, including Hadoop, MATLAB, MADIib, System C, Hive, and
Spark Streaming [4-6]. Some authors have also explored performance evaluation plat-
forms [7] as well as some emerging technologies, such as cloud computing, real-time
data processing [8], and fog computing [9]. In addition, we can also include authors
dedicated to developing methodological approaches to process AMI data [10,11].

e  Load Profile Identification. This is one of the most common applications developed
with AMI data. It implements algorithms to identify customer’s consumption pro-
files [12]. Some tools used for this type of applications are clustering algorithms [13],
artificial neural networks [14], self-organizing maps (SOM) [15], or support vector
machines (SVM) [16]. Some authors have even implemented applications that reach
the level of load disaggregation to evaluate consumption patterns [17-19]. In this
sense, there are two major approaches, namely Intrusive Load Monitoring (ILM) and
Non-Intrusive Load Monitoring (NILM). ILM requires the installation of additional
measurement equipment, increasing implementation costs, while NILM is presented
as an approach that requires more intensive analytical methods, with a lower hardware
investment [20-22].

*  Load Forecasting. This application seeks to predict the energy demand of customers.
It has become one of the most studied since it improves the planning processes into the
utilities” operation. Some authors have used approaches, such as knowledge discovery
from database methodologies (KDD) [23], machine learning [24,25], evolutionary
algorithms [26,27], clustering [28], and deep residual networks [29].

e  Demand Response Programs. This is one of the applications with the highest po-
tential in Smart Grids because it enables customer participation in the value chain.
These programs intentionally seek to modify a consumer’s consumption pattern
to reduce consumption peaks, as manifested in the utility demand curves. Some
authors have implemented advanced analytical techniques focused on this type of
application [30,31] and evaluated their effectiveness [32].

®  Loss detection. This generally concentrates on the detection of non-technical losses
and represents cases with direct monetization of the application. In this regard, several
authors have proposed to use different data analysis techniques, including Extreme
Learning Machines, Genetic Support Vector Machines, Boolean Rules, Fuzzy Logic,
SVM [33], or spectral analysis of periodic patterns [34].

There are currently several studies on Big Data and Data Analytics applications
for AMI data. However, it is evident that fractional developments do not incorporate a
global integration of architectural components of the data life cycle or consider a complete
methodology. On the one hand, some Big Data and Data Analytic methodologies have
already been defined [35]. On the other hand, there are architectures to develop Smart
Grids in which the AMI systems are framed [36].

For instance, the work developed in [37] combined both areas in a framework, but only
as an architectural view (Where?, Using what?) and not as a methodological one (How?).
Most of the developments found in the literature are focused on the application of methods
but leave aside some cross-cutting architecture components, such as information security
and privacy, data governance, information integration and sharing, platform scalability,
the variability of the requirements, and the data sources over time. Based on the above,
two main focuses are evident: AMI as the one for Smart Grids and Data Analytics/Big
Data as tools to give value to the data generated from the AMI deployment.
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We have purposely preferred to separate the terms Data Analytics and Big Data. The
first one is about the raw data transformation into usable knowledge through different
algorithms and techniques [7]. The second term refers to the characteristic of the data
itself to be processed (volume, velocity, and variety). Thus, depending on the data, a Data
Analytics application may or may not be considered “Big.” The difference is that Big Data
applications require much more complex processing platforms due to the nature of the
source data. Even so, several authors prefer to use the term Big Data Analytics to work
with one or the other approach together [38-40].

Based on these concepts, in this work, we aim to present a Data Analytics/Big Data
framework for AMI data using human expertise and skills as a binding element. The
human expertise incorporates architectures (Where?) and methods (How?) to transform
and give value to the AMI data. Such transformation brings profits to the Smart Grid, the
company, and its customers, in addition to the evidenced requirements, which are not only
technological but also related to human training and skills.

The following section presents the proposed framework and describes its components.
We validated this framework through two case studies. The first case about the analysis of
electricity consumption data from smart meters in London from 2011 to 2014 was already
reported in [41]. Section 3 presents the second one, which implements each component of
the framework for a load forecasting application in a Colombian Retail Electricity Provider
(REP). Finally, Section 4 presents the main conclusions, highlights, and future directions.

2. The Data Analytics/Big Data Framework for Ami Data

This section presents an implementation framework to join tools of both niches: AMI
data and Data Analytics/Big Data, whether data is considered “Big” or not. The framework
fits them crosswise by incorporating a binding element. This section describes these three
major components. The first explicitly depicts AMI, its role, and deployment framed in the
Smart Grids (SGAM) as an architectural view. The second major component involves the
evolution process that AMI data has to undergo to generate value at the business level in
SGAM as a methodological view. Finally, we present the binding element between the two
previous components, i.e., human expertise and skills, which allows understanding the
results previously obtained better.

2.1. Architecture View: Advanced Metering Infrastructure in the Smart Grid

The first architectural element considered for the proposed framework is the same
used for Smart Grids. In this regard, several authors propose some architectures to es-
tablish a common framework to develop Smart Grids applications [42-44]. However, the
architecture presented by CENELEC has become a benchmark in the context of Smart Grids
around the world [36]. Figure 1 depicts this Smart Grid Architecture Model, well known
as SGAM.

SGAM took its inspiration from the model proposed by the GridWise Architecture
Council. The basis of this model is the concept of interoperability, which is considered a
key enabler of Smart Grids [45]. Interoperability suggests the ability of two systems, from
the same or different manufacturer, to exchange information and use it correctly for the
operation of a process [46]. Based on this model, CENELEC grouped the eight proposed
categories by the GridWise Council into five interoperability layers, as shown in Figure 1.
This grouping aims to introduce an architecture that facilitates the implementation of use
cases applicable to the context of Smart Grid. Below we describe each interoperability
layer briefly.

*  Business Layer: refers to the global vision from a business view. This layer supports
decision-making oriented to new business models, business cases, new market models,
among others.

*  Function layer: refers to functions and services, as well as the relationships between
them. Since the business layer implies functions, they must be considered indepen-
dently of the actors and components to achieve the proposed functionalities.



Sensors 2021, 21, 5650

4 of 25

Interoperability
Layers

Business Layer

Function Layer

Communication Layer

Component Layer

Information Layer: refers to the information exchanged between devices, functions,
and services. It also contemplates data models representing the semantics of the
information that flows at each network stage.

Communication Layer: refers to the protocols and mechanisms for the interoperable
exchange of information between the Smart Grid components.

Component Layer: refers to all the physical components present in the context of
Smart Grids, e.g., actors, applications, power assets, protection devices, and net-
work infrastructure.

Business Objectives
Polit. | Regulat.. Framework

Generation
Transmission
Di

istribution
DER

Figure 1. The Smart Grid Architecture Model (SGAM).

In addition to the interoperability layers, the CENELEC architecture considers the

Smart Grid Plane, located at the bottom of Figure 1. This plane represents the interaction
between the processes (physical domains) of the electrical energy conversion chain and
management viewpoints (hierarchical zones or levels).

Bulk Generation: represents the processes of energy generation in large quantities,
such as hydroelectric plants, nuclear plants, and solar and wind farms.
Transmission: represents the infrastructure arranged to transport electricity over long
distances.

Distribution: refers to the infrastructure arranged to distribute energy to the end-user.
Distributed Electrical Resources (DER): refer to small-scale power generation tech-
nologies connected directly to the distribution network.

Customer Premises: refers to all the facilities of clients who may be electricity consumers
or even producers. Premises include industrial, commercial, and home facilities.

In addition to the domains, the SGAM zones represent the different hierarchical levels

of electrical system management. The main objective of the zones is to establish functional
separation in the power system [47]. These zones are:



Sensors 2021, 21, 5650

5of 25

Process: includes the physical, chemical, or spatial transformation of energy and all
the equipment involved in these processes.

Field: refers to equipment to protect, control, and monitor power system processes.
Station: represents data concentration elements for an area just as supervision and
automation systems for plants or substations.

Operation: refers to power system control operations for each domain.

Enterprise: includes the organizational and commercial processes of each utility, ser-
vice provider, or energy trader. These processes include asset management, workforce
management, logistics, and staff training, among others.

Market: considers all the operations that can take place in the wholesale energy
market, retail energy markets, or the spot energy market.

In summary, the architecture integrates three core viewpoints: layers, zones, and

domains. These three components form the Smart Grid Architecture Model (SGAM). Since
the focus of this paper is AMI data, this section maps the deployment of AMI components
over SGAM. In this regard, the work from [43] describes the requirements for AMI using
SGAM. This description pictures from the business layer to the component layer.

AMI business layer

This layer depicted in Figure 2 summarizes the AMI’s goals for a Smart Grid. These
goals can involve three business functions that frame the general objectives of AMI:
metering services, smart metering, and advanced functionality [43]: metering ser-
vices refer to the primary measurement capabilities expected from AM], i.e., at least
minute interval energy measurements; smart metering refers to extended functions
to gather data, e.g., billing and aggregated or detailed metering data; and finally ad-
vanced functionalities are related to extended goals, like dynamic tariffs and demand
management.

1 1
(1) Advanced Functionality

Market
- Demand Management

+ Dynamic Tariffs
- Customer Service
(2) Smart Metering

Enterprise

- Monthly Billing

- Increase of Process Efficiency

- Enhanced Customer Service Operation

(3) Metering Services

« Meter Data Provision

Station
+ Basic Meter Functions

Field

Process

2 "
% 3, % % 2%
s, 25, % e %, 5%,
%, %, . 2 P,
% s, 0, S

Figure 2. AMI business layer mapped over SGAM.

AMI function layer

This layer depicted in Figure 3 defines the necessary functions; generally, Information
Technology (IT) functions to achieve the goals established in the business layer. The
layer presents three functional blocks: service platforms, directory services, and sensors
or actuators. Service platforms are the metering data preparation for different roles,
like the distribution network operator, DER operator, or customer. Directory service
relates to the functions of controlling and accessing measuring devices. Sensors and
actuator gateways refer to the interfaces for accessing and controlling such devices.



Sensors 2021, 21, 5650

6 of 25

] |
Market
(1) Service Platforms
Meter Data Provision Enterprise
Smart Markets Operation
2) Directory Services ]
Smart Grids/ @ v
Information Hub (Discovery, Control, ...) .
. Station
Meter Data Handling
(3) Sensors and Actuators .
Gateways and Interfaces for DER Field
(Network Stability)
Mefter (initial) Operation and Maintenancel
Process

32

- <, (o)
%, % %
), 0’/3\94’0,

Figure 3. AMI function layer mapped over SGAM.

This layer may be the most important for its role as a data provider for different
applications. It involves the distribution, DER, and customer premises domains. It
also covers the zones of operation, enterprise, and market.

The German Federal Network Agency coined two terms in this context: Smart Grids
and Smart Markets. Here, Smart grids refer to the operation of the network and its
service provision infrastructure. Concerning IT functions defined in the function layer,
these components act as an information hub. Smart Markets refer to instances outside
the physical infrastructure of the network to trade services among market participants
according to the available capacity of the network [48].

AMI information layer

The IEC Seamless Integration Architecture (SIA) was defined by the IEC Technical
Committee 57 “Power Systems Management” (TC 57) [47]. Into SIA, the Common
Information Model (CIM) serves as an information model for all entities participating
in the market [49]. According to [43], the AMI information layer presented in Figure 4
contains three standard groups that define information models.

(1) CIM (IEC 61968/70), Market

IEC 62325 and EDIFACT
Enterprise

(2) CIM (IEC 61968/70),
IEC 62325, EDIFACT and

ANSI C12.19/ MC1219 Operation

(3) Digital Meter/Home Station

Gateway
IEC 61334 (DLMS) and
IEC 61850/ 61851 Field

Process

2 ,
) o’\v 06‘ ,ooo
% 2 %, g LY
9 S, %, s, 0,
% % s e,
) %/7 9, G

Figure 4. AMI information layer mapped over SGAM.
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The first group contains market-related standards and regulatory data formats. The
second group includes relevant standards for the company and operation areas. The
third group considers standards focused on the integration and control of measure-
ment devices in the field zone.

AMI communication layer

This layer presented in Figure 5 includes the protocols for the transport of information
between the different instruments of the measurement infrastructure.

Market

(1) IEC 61968 Part 9

Metering Enterprise
Operation
Station

(2) GOOSE, TASE.2,
TCP/NIP
Zigbee (HAN), PLC, KNX )
Field
e —1

Process

2 A
@s,) S, o’@, oﬁp 25,
o s % %, %,

%, 7%, %, "y Py

Y %, o, Se #

Figure 5. AMI communication layer mapped over SGAM.

The authors in [43] identified two groups: the first one is related to protocols for data
exchange in business and market zones, such as IEC 61968-9; and the second group
involves protocols focused on the operation, station, and field zones, e.g., Zigbee
or Goose.

AMI component Layer

This layer presented in Figure 6 is the lowest level of SGAM. This layer implements
the requirements of the previous layers.

(1) Commercial Market
Applications
CRM and Billing

I~ —-1-—----f----- Enterprise

OMS, Meter Device Management, Asset
and Meter Data

1

1

1
(2) Operational Applications T

1

: Operation

1

(3) Substation

Station

(4) Data Concentrator

(5) Remote Meter

— ——

(7) Smart Meter (Sym*/ EDL 21/40) and

Intelligem Home Device

(8) Actuators and Sensors

o e p——— S

Field

and Networks
(MVILV)

Generators

_____ E===—=
(9) Transformers| (10) I (1) Home

Network /
Devices

Process

[4)

G 2%
%, £
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Figure 6. AMI component layer mapped over SGAM.

This one presents two main groups. The first group represents the AMI core elements
and includes the operating platforms and the technical equipment, such as information
and communication technologies. The second group refers to secondary components
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related to AMI deployment, such as commercial applications or transformers and
network equipment.

Figure 7 groups together all the layers described above. This figure combines the
layers from Figures 2—6 in the standard SGAM representation [36], based on the work
presented in [43]. The figure presents in red dotted line the SGAM layers, zones, and
domains involved in the specification of our Data Analytics/Big Data framework for
AMI data.

Business
Layer

Function
Layer

Information
Layer

Layer

Customer
Premise

Process

Figure 7. AMI components over SGAM.

The SGAM business layer defines AMI’s goals for Smart Grids. These goals can
include the basic functionalities of the smart metering system to the implementation of
dynamic tariffs, billing, and demand management, among others. The function layer
describes the platforms and services that fulfill the necessary functions to meet these
goals. Thus, this layer offers metering data provision: customer databases, consumption
information from each meter (power active or reactive energy), tariff schemes, and system
events (interruptions, failures, connections, and disconnections), among others.
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The analysis starts with the data coming from the service platforms, which are in
charge of the metering data provision. In addition, the communication protocols, the data
models, and the devices from which the information is coming from do not matter since
the framework does not interfere with SGAM’s lower interoperability layers.

2.2. The Methodology View: Dikw Hierarchy and Nist Model
2.2.1. The Dikw Hierarchy

In 1989 Russel Ackoff first proposed the wisdom concept as a hierarchical structure to
define the evolution of an entity from its data character to a higher level [50]. In his work,
the hierarchy included the following stages: data, information, knowledge, understanding,
and wisdom. However, several authors in the literature prefer to place the understanding
as part of the knowledge [51].

This structure and other similar ones have been generalized in the literature as the
DIKW model (Data, Information, Knowledge, and Wisdom) obeying each of the hierarchi-
cal stages of the structure, as presented below in Figure 8.

IaN
/\L "\I
Human Input
Meaning
£ Value
= Applicability )
Transferability
\ Data N

\

AN

~. 4

Figure 8. Data, Information, Knowledge, and Wisdom (DIKW) hierarchy and changing variables.

According to work presented in [50] and in the study presented later [51], the following
definitions are essential to understand the hierarchy:

. Data: refers to elemental symbols representing properties of objects, events, activities,
or transactions. They are the product of observation or measurement. However, they
have no usability or meaning.

¢ Information: refers to the functional nature of the data. Information is a transforma-
tion of the data in an understandable and meaningful format to meet a purpose. It
generally answers questions like what, who, and when. Information systems gener-
ate, store, retrieve, and process data. Usually, to convert data into information, the
processes of classification, rearranging/sorting, aggregating, performing calculations,
and selection are required. The authors in [52] noted the importance of the context
and the purpose of the information.

*  Knowledge: refers to know-how. It is the step that makes it possible to transform
information into instructions. Although there is no consensus on its meaning, several
authors affirm that knowledge supports decision-making at a primary level [52].
Decision-making requires a combination of common sense and semantic aspects
related to interpretation.

e Intelligence and Wisdom: Intelligence is the ability to increase efficiency. Wisdom is the
ability to increase effectiveness. The first term is related to growth (of an organization
or business), which does not necessarily require added value. Instead, wisdom implies
development, which does require added value [50]. The term wisdom involves
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“human judgment about important, difficult, and uncertain questions associated with
the meaning and conduct of life [53].” Some authors relate wisdom to the ability
to apply concepts from one domain to new situations or problems and make more
in-depth decisions [54].

In addition to the stages of the DIKW hierarchy, the author in [51] mentioned a
series of transversal variables that change according to hierarchical stages, as presented in
Figure 8. The graph suggests that one step up in the hierarchy requires more human skills
to transform the information and give it value (knowledge and wisdom). On the contrary,
one step down shows a need for computational helping (information and data).

Thus far, we have described two primary components of the framework presented in
this paper: AMI framed in the Smart Grid through SGAM and DIKW (Data, Information,
Knowledge, and Wisdom) as the evolutionary hierarchy of data. We depict these two
components and their relationship below in Figure 9.

Information Knowledge Wisdol

Figure 9. Smart Grid Architecture Model as a data provider for the DIKW hierarchy.

Figure 9 presents, on the one hand, the SGAM architecture and AMI components in
Smart Grids. On the other hand, the DIKW hierarchy sets the goal of transforming data
into wisdom. The next step is to establish a method that allows this transformation process,
which requires consideration of the nature of AMI data, such as the volume, velocity, and
variety. These characteristics are the principal components (also known as 3V) of Big
Data [55]. Volume involves a growing number of smart meters. Velocity refers to data
generation at shot time intervals. Variety refers to the different platforms where data may
come from, depending on the application: smart meters and external sources, such as
weather databases or Geographic Information Systems (GIS).

As we stated before, according to the application and the nature of the data sources,
we can talk about “Big” Data or just “Data”. However, Data Analytics processes, in
global terms, involve a general methodology that can be applied. The need to use Big Data
techniques (due to the AMI data nature) and Data Analytics (due to the data transformation
needs) is evident. To meet these needs, the National Institute of Standards and Technology
(NIST) proposed a reference framework for developing Big Data projects [56].

The NIST model always involves a Data Analytics stage. Although the model pro-
posed by NIST was initially for Big Data applications, the following section shows how we
can use some components when dealing with Big Data (Big Data Analytics) or just Data
(Data Analytics).
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2.2.2. Nist Big Data Reference Architecture

Reference architectures generally serve as a template for developing solutions in

an orderly manner in a specific field and may be used for comparison and alignment
purposes. The architecture settled by NIST has been developed by bringing together
common elements found in different documented case studies around the world. The
reference architecture presented in Figure 10 also includes general considerations on Data
Analytics, its implications, and requirements [57].
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Figure 10. NIST Big Data reference architecture [57].

The reference architecture proposes five primary roles.

System Orchestrator: defines and integrates the required data application activities
into an operational vertical system. It provides the overarching requirements for
business ownership, governance, data science, and system architecture.

Big Data Framework Provider: establishes a computing framework to execute specific
transformation applications while protecting the privacy and integrity of data. Re-
sources or services used by the Data Application Provider: Infrastructure framework
(networking, computing, storage, environmental), Data platform (physical storage,
file systems, logical storage), and Processing (software support for applications). This
stage is the most sensitive to the nature of the data to be processed. A Big Data
Analytics application may require a more sophisticated computing framework than a
Data Analytics application.

Data Provider: introduces new data (generally, raw data) or information sources into
the Big Data system, either online or offline. It is also responsible for data persistence
(hosting), data scrubbing (remove Pll-personally identifiable information), metadata
(for history and re-purposing), policy for others” access to data, and query without
transferring (sometimes).

Data Consumer: includes end-users or other systems that use the results of the
Big Data Application Provider: search and retrieve, download, analyze locally, and
reporting and visualization.

Data Application Provider: executes a life cycle to meet security and privacy re-
quirements. It also develops System Orchestrator-defined requirements, mechanisms
to capture data, preparation, analytics (discovery for finding value in big volume
datasets), visualization (exploratory, explicatory, or explanatory), and access to the
results of the data system. Again, it is essential to note that this life cycle is applicable,
in general terms, to both Big Data Analytic and Data Analytics applications.
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Big Data Analysis differs from Data Analysis when it includes the volume, velocity,
and variety characteristics of the data under process. Here, we refer to it when we
take the AMI data from the function layer (data from smart meters) in the SGAM and
the application requirements. In this life cycle, the information is collected, prepared,
analyzed, visualized, and accessed.

In addition, the NIST reference model mentions five general stages of this life cycle

for the Application Provider:

Collection: This stage is responsible for connecting to the Data Provider and extracting
the data. Such data may be available from various sources. We can refer to this stage as
the “extraction” portion of the ETL (Extraction, Transformation, and Load) cycle [58].
Preparation: At this stage, we carry out the necessary tasks to make the data usable
and ready to be analyzed. It includes tasks, such as data validation, cleaning, outlier
removal, and standardization. It corresponds to the "transformation” portion of the
ETL cycle.

Analytics: This stage is where we implement all the techniques and algorithms
necessary to meet the analysis goal specified by the application. It includes different
algorithms and statistical or machine learning approaches. This stage is as complex as
defined in the analysis requirement.

Visualization: In this stage, we prepare the elements resulting from the analytics’ stage
and present them to the Data Consumer. Visualization can consist of simple reports or
even interactive applications for the end-user.

Access: This stage is closely related to the visualization stage. It is responsible for
giving the required access to the correct user. It can be web services based on access
roles or any approach that allows each user, from their role in the application (e.g.,
manager, operator, or supervisor), to access the results they require.

These five stages generally describe the transformation of data into knowledge that

end-users can use. However, other authors have proposed an extended cycle [59] that
seeks to “organize the activities and tasks involved with acquiring, processing, analyzing,
and re-purposing data.”

In any case, whether with the five steps proposed by NIST or the nine of the extended

cycle presented in [59], the goal of this stage is to transform the data into usable results
through a defined purpose and the use of data analytic techniques and algorithms. Next,
Figure 11 adds the NIST reference model as a new element of the framework proposed in
this paper.

Business
Layer

Layer

Layer

Layer

~ AMidata

Knowledge
provision
\ ’ TNFORMATION VALUE CHATN

Premise

Figure 11. SGAM as data provider architecture for DIKW hierarchy, and NIST model as data
transformation methodology.
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The framework proposed in Figure 11 presents a relationship between the architec-
ture business/function layers of the AMI deployment over SGAM. In turn, the reference
framework proposed by NIST acts as a method that allows the transformation of AMI raw
data into knowledge to advance the hierarchy proposed in the DIKW approach.

2.3. The Binding Element: Human Expertise and Skills

In addition to the elements presented in Figure 11, the framework requires a com-
ponent capable of transforming the knowledge generated from AMI data into a much
complex, valuable category in the DIKW hierarchy: wisdom. This last transformation
step requires, as mentioned above, human expertise and skills for decision making and
judgment about essential decisions and actions [53]. This expertise allows the adaptation
of concepts from one domain to new situations [54].

In this way, human expertise plays a crucial role in the business layer of AMI over
SGAM by defining goals and objectives and transforming knowledge into wisdom from
the DIKW vision. This human expertise, as a new component completing the proposed
framework, is shown in Figure 12.

Human Exbértise

AMI data
provision

Knowledge | Wisdom

Process |’": = o “.wm Traoster ‘

Figure 12. Components and relationships of the proposed framework: SGAM (data provision architecture), DIKW hierarchy

(data evolution goal), NIST (methodology to transform data into knowledge), and Human expertise (binding element to

transform knowledge into wisdom).

West Monroe and the Illinois Institute of Technology conducted a study focused on
addressing the US national workforce challenge representing the evolution of power grids
into Smart Grids. The study focused on identifying the jobs impacted by the Smart Grid,
capturing the level of Smart Grid impact on these jobs. The study defined critical Smart
Grid skills requirements and evaluated the current training opportunities to address Smart
Grid workforce skill requirements. One of the most relevant results of the report is the
Smart Grid Jobs and Skills Matrix specification, as presented in Figure 13 [60].

Figure 13 presents the level of competence required for each job (left) and each Smart
Grid skill area (top). The green level involves awareness and understanding of the relevance
of the job in the industry. The yellow zone demands knowledge of topics and solutions.
At this level, competency of concepts is related to job responsibilities at an intermediate
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level. The red level requires expertise and mastery (wisdom) of topics and solutions. This
expertise is wholly related to the established responsibilities. Therefore, engineering and
IT roles are the most related to skills at a level of expertise. Such an idea suggests that
interdisciplinary training is an evident need within the evolution of electrical networks
context, including AMI.
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Figure 13. Smart Grid Jobs and Skills Matrix.

The Washington State University extension program prepared a report for the Pacific
Northwest Center of Excellence for Clean Energy titled “Smart Grid Skills for the Energy
Workforce.” This report condensed the opinions of several people involved in smart
grid upgrade projects. The objective was to describe the impact of smart grid technology
implementation on energy employees’ knowledge, skills, and ability requirements. The
study also sought to determine what are some of the significant implications for the
education and training of current employees and new hires. According to the reported
results, “there was a heightened need for employees who can envision how their work
affects—and is affected by—the larger system within which they must operate [61]".

In general, the report indicated that the new generation of electrical networks requires
personnel with system thinking capabilities. This term refers to the vision of activities from
two perspectives: operating perspective, related to technical activities, and philosophical
perspective, associated with considering the impact of activities on other activities.

The study also indicates that network modernization requires employees with interdis-
ciplinary training and skills to perform in different situations, synthesize information, and
have perspectives from different fields. Such a set of skills is called functional knowledge.
Among the interdisciplinary areas with the highest value were identified: knowledge
of information technology, communications, computer programming, finance, business
management, and consumer behavior.

One of the most critical skills highlighted by the study is programming skills and
the need for Big Data Analysis and Management training. The results emphasize both
the knowledge of how this transmission system works (substations, meters, and general
operation) and the programming structural mind-frame required to relate the operation
to information systems, communication, data life cycle, among others. The non-technical
skills reported in the study grouped project management, interdisciplinary exposure, and
understanding customer behavior stand out [61].

3. Framework Validation Results: A Case Study

We performed a previous validation of this framework with an exploratory case
focused on Big Data and Data Analytics. For that study case, we focused on the elec-
tricity consumption data analysis from smart meters in London from 2011 to 2014. We
obtained more than 670 million data warehouse records to be processed and analyzed by
consolidating different data sources. The Big Data Analytics developments implemented
in that previous study case are load forecasting, customer clustering, and modeling and
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identifying atypical consumption. We already detailed the implementation and results of
the case study in a previous number of this Sensors Journal [41].

The case study described in this article was not so focused on Big Data as the previous
one but more on Data Analytics due to the volume of records available. For this case study,
we implemented each component of the proposed framework for a load forecasting appli-
cation in a Colombian Retail Electricity Provider (REP). The REP participates in 30 markets
associated with two companies belonging to the same REP. Each market corresponds to a
city where one of the companies of the REP operates. In this case study, we assigned the
names for the companies as Company 1 and Company 5.

Currently, the statistical department of the REP forecasts the energy consumption of
its clients as a whole. However, this department found that when they disaggregate the
forecasting by each market (city), the Mean Absolute Percentage Error (MAPE) is 38%.
The objective of the case study is to implement a pilot project to improve the demand
forecasting of the REP’s customers, grouped by market, i.e., by cities in 12-h time intervals
(a.m. and p.m. intervals). As it is a preliminary pilot model, the implementation time for
this case study was three weeks.

3.1. SGAM Business and Function Layers

As in the SGAM presented in Figure 1, the problem described previously defines the
goal of the study case, which is the role of the business layer: an application to improve the
load forecasting of the company disaggregated by market or city. After the goal definition
of the case study, the function layer must guarantee the functionality of the platforms so
we can meet the goals defined in the business layer.

According to [43], this layer, for the AMI case, includes service platforms referring
to the preparation of the meter data for different roles like distribution network operator,
DER operator, or customer. In this sense, the REP gave us access to the data provided by
two of its service platforms. The first platform (smart meter data platform) delivers data
related to the metering infrastructure system, i.e., data from smart meters installed at each
customer premise.

The second platform (customer data platform) displays client-related information.
Thus, the goal defined in the case study corresponds to the SGAM business layer. Corre-
spondingly, the data provider platforms to the SGAM function layer. With the components
of the business and function layers identified, it is possible to go to the data transformation
stage, as indicated on the right side of Figure 12 and depicted in Figure 10.

3.2. Transformation of Data into Information and Knowledge

According to the DIKW model [51], we start from raw data (obtained from data
platforms in the SGAM function layer) to transform it into knowledge using the reference
framework proposed by NIST [62].

e  System Orchestrator. The authors and the REP development team fulfilled this role.

*  Data Framework Provider. Universidad del Valle provided data storage and process-
ing infrastructure with a cluster with the following capabilities: 11 TB HDD, 138 CPU
cores, 384 GB RAM, 23,808 CUDA Cores/176 GB GPU.

e  Data Provider. The service platforms mentioned in the SGAM function layer ful-
fill the role of the data provider. This role links the architectural (SGAM) and the
methodological component (DIKW + NIST model) of the framework proposed in
this work.

¢ Data Consumer. The development department and the CEO of the REP assumed this
role. They are the end-users of the results of the application.

e  Data Application Provider. We developed all processes related to the Data Analytic
life-cycle, involving steps like data collection, preparation, curation, analytic, visual-
ization, and access. This role is the one that ensures transformation from raw data to
knowledge and covers the data life cycle presented before.
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3.2.1. Data Collection and Preparation

The first transformation of data is its conversion into information [51]. To do this, we
accomplished the first two tasks as Data Application Provider: data collection and data
curation/preparation, as presented in Figure 10. We completed these tasks by building
an Extraction-Transformation-Load (ETL) stage [63], creating some functions, and using
others from the Pandas Python library [64].

Extraction. Using the functions from the Pandas library, we had access to the two
data platforms mentioned above, which provided us with historical energy consumption
data from 1 January 2018 to 27 November 2019, and customer data. The smart meter data
platform delivered one file for each month of historical data. We had access to a total of
1,949,337 records with active and reactive energy measurements hour by hour. For the
case study, we only considered active energy consumption. Fifty-six fields composed the
data, including customer ID, date, market (city), REP Company, and active and reactive
energy measurements for each hour. The customer data platform provided data from 3534
customers and their corresponding characteristics. Eleven fields composed the data, in-
cluding customer ID, economic activity, contract-related information, electrical installation
information, and market (city) for each customer.

Transformation. We developed transformation functions using the Pandas library
to build a data warehouse, filtering corrupt/incomplete records for both customer and
consumption records. We only considered border (total) measurements and grouped
consumptions by markets, not by customers, as requested in the REP goal. The smart
meter data platform delivered raw data in a matrix-like dataframe with the 56 fields
mentioned above. However, once we grouped the data by market, we made 30 time-
series dataframes with only five fields: Company ID of the REP, market (City), timestamp
(one-hour intervals), type of day: business day, weekend, or holiday, and active energy
consumed at each time interval.

Load. At this stage, we stored the dataframes in a warehouse with only the necessary
information to continue with the required analysis. Table 1 presents the number of records
of each dataframe corresponding to the time-series consumption of each market between
1 January 2018, to 27 November 2019 at one-hour intervals.

Table 1. Dataframes and records in the warehouse.

Company ID Market Records for Market
Antioquia, Bogota, Boyacd, Caldas, Cali, Cartago,
1 Casanare, Cauca, C. Atlantica, C. Caribe, Medellin, 16,704
Narino, Quindio, Valle del Cauca.
1 Cundinamarca 10,176
1 Putumayo, Tolima 9168
1 Santander 12,481
1 Tuluad 9504
5 Antioquia 12,768
5 Bogotd 12,936
5 Cali 14,616
5 Costa Atlantica 3528
5 Costa Caribe 1968
5 Entrerrios 6552
5 Medellin 13,440
5 Pereira 1272
5 Putumayo 9312
5 Tolima 8112
5 Valle del Cauca 13,272
Total Records in Warehouse 404,401

In this way, we transformed almost 2 million records of raw data into information
represented by only 404,401 records grouped into 30 dataframes necessary to run the load
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forecasting algorithms required for the case study. The next level of DIKW evolution is the
transformation of information into knowledge. This transformation corresponds to the
tasks of data analytics, visualization, and access presented in the NIST Big Data framework
as part of the role of Data Application Provider.

3.2.2. Data Analytics

For this task, we chose a machine learning regression library called XGBoost, available
for Python [65]. The name XGBoost stands for “Extreme Gradient Boosting,” a supervised
learning algorithm based on gradient boosted trees [66]. The advantage of these regressors
is the low computational cost required in assembling several weak learning entities to form
a strong entity capable of learning and performing regressions or classifications [67].

We can describe a target y; to be a function of x; inputs as:

vi =) 0x;j ey
j

where y; is the prediction from the input x;;, and 6; is the set of parameters or the unde-
termined part of the model that needs to be learned by training. The task of training the
model is to find the set of parameters 6; that best fit the training data x;; so §; can match the
target ;. The objective function consists of two parts: training loss and regularization term:

Fit(0) = L(6) + Q(0) @)

where L is the training loss function, and () is the regularization term. The regularization
term controls the complexity of the model, which helps to avoid overfitting. In XGBoost,
the classifier and a special assembly of several decision trees define the objective function.
The tree ensemble model consists of a set of Classification and Regression Trees (CART).
A CART is different from decision trees, in which the leaf only contains decision values.
Each leaf has a score in CART, which provides more in-depth information beyond a simple
classification [68]. Usually, a single CART is not strong enough. Instead, an ensemble
model is better, which sums the prediction of multiple trees together. We can describe the
prediction model using CART ensembles as:

K
Vi=) few) Se€F 3)
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where K is the number of trees, f is a function in the functional space I, and F is the set of
all possible CARTs. The objective function to be optimized is given by

n K
Fit(0) = } Ly 1) + ) Qfe)- €
i k=1
XGBoost defines the regularization term as:
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where w is the vector of scores on the leaves, T is the number of leaves, and 7 specifies the
minimum loss reduction required to do a split. A leaf only splits when the resulting split
gives a positive reduction in the loss function. A is the regularization parameter or penalty
term, which determines how much to penalize weights or scores. The logic described by
the previous equation was compiled in [65] in the XGBoost algorithm. The implementation
principle is learning a behavior (target) from specific characteristics or features (inputs).
For this case study, the target is electricity consumption, and the features are all char-
acteristics that might lead to such consumption. We proposed the features that supported
the model as of two types: instant and historical. On the one hand, instant features are
those associated with the timestamp of each record as the hour of the day, day of the week,
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whether it is weekend or not, whether it is a holiday or not, quarter, month, week, and day
of the year.

Instant features also can be related to energy consumption, as the average weekday
consumption and the hour average consumption according to the timestamp of each record.
On the other hand, the historical characteristics refer to energy consumption in previous
times, if they influence current consumption behaviors. For the case study, we included
historical consumption up to one week before the time stamp indicated in each record.
We proposed two configurations for XGBoost regressors. The first one considers only
instant features.

The consumption habit may be influenced only by this type of feature. For example,
the case of a factory that only operates and produces merchandise on specific days of
the week and only at certain hours of the day. These instantaneous characteristics (day
and time) directly influence the factory’s energy consumption. The second configuration
includes, in addition to the instant features, the historical features. Depending on the activ-
ity of a customer, their immediately previous consumptions can influence later behavior.
For example, consider the case of a user who wants to keep his consumption within a
specific range; if that customer had a high energy consumption during the first days of
the month, he might want to reduce it in the subsequent days so as not to exceed any
consumption limit.

As each market needed its model, we trained two regressors for each market (one
for each available configuration). We used 80% of the available information to train
them and evaluate their performance. Although the initial application requirement was
prediction at 12-h intervals, given the granularity of the data, regressors were trained to
make hourly predictions, that is, with greater detail. We selected the MAPE between the
actual consumption and the predicted energy consumption for each hour of the day as
performance measurement.

For each market, the algorithm chose the regressor with the configuration that pre-
sented the lowest MAPE performance in the training stage. Table 2 presents the MAPE
measured every hour for each market and company in the third column. As observed in
Table 2, the markets Putumayo, Tolima, and Tulud from Company 1 and Costa Caribe, and
Tolima from Company 5 have a higher average percentage error. By looking at the number
of records available according to Table 1, we found that due to the low data availability,
the training and learning process of the regressors did not perform well. Therefore, the
prediction results had a higher error rate.

3.2.3. Data Visualization and Access

We used Tableau dashboards for the result visualization. Figure 14 presents a graph
with the forecasting results for the Medellin market on 13-16 July 2019. The blue lines
represent the upper and lower confidence intervals. The dark green line represents the
actual energy consumption for each market, while the light green line represents the
forecasted value. The orange dots on some data represent points where the consumption
was outside the expected range. These points probably represent an anomaly consumption.
The goal of the case study was to improve consumption forecasting at 12-h intervals,
considering that REP has a MAPE of 38% when dis-aggregated by each market.

To establish the same comparison scenario, we grouped the hourly consumption
predictions into 12-h intervals (a.m. and p.m), as shown in the last column of Table 2. As
expected, grouping the measurements and predictions into longer time intervals decreased
the average percentage error since the forecast error for some hours of the day may be
compensated by other points in the same time interval (a-m. or p.m.). The transformation
of data into knowledge using data analytic techniques improved the MAPE from 38% to
8.90% for energy consumption forecasting in 12-h intervals dis-aggregated by company
and market.
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Table 2. MAPE by one-hour and 12-h intervals for each company and market.

Company ID Market MAPE by hour MAPE by 12-h
1 Antioquia 5.79% 3.86%
1 Bogotd 4.66% 3.91%
1 Boyaca 33.16% 15.16%
1 Caldas 30.30% 13.30%
1 Cali 4.45% 3.57%
1 Cartago 6.24% 3.85%
1 Casanare 0.01% 0.02%
1 Cauca 16.71% 10.61%
1 Costa Atlantica 17.43% 12.33%
1 Costa caribe 7.14% 4.88%
1 Medellin 5.60% 4.20%
1 Narifio 6.24% 4.57%
1 Putumayo 101.01% 41.69%
1 Quindio 12.56% 5.35%
1 Santander 24.10% 14.77%
1 Tolima 74.71% 32.87%
1 Tulua 54.30% 27.03%
1 Valle del Cauca 6.33% 4.04%
5 Antioquia 9.58% 8.01%
5 Bogotd 7.82% 6.46%
5 Cali 7.69% 6.42%
5 Costa Atlantica 15.38% 10.57%
5 Costa Caribe 140.56% 62.19%
5 Entrerrios 17.21% 13.66%
5 Medellin 9.78% 8.76%
5 Pereira 17.75% 11.97%
5 Putumayo 10.72% 5.54%
5 Tolima 64.61% 7.87%
5 Valle del Cauca 9.33% 6.44%
MAPE for all forecasts 17.45% 8.90%
Company Farket
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Figure 14. Snapshot of the forecasting dashboard for the Medellin market, Company 1: real vs.

predicted values and upper/lower confidence intervals.
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We also designed some dashboards with descriptive analysis. They do not imply
the implementation of any data analytic or machine learning technique. However, this
additional visualization aimed to facilitate data consumer access to the information used in
the case study from the data provider platform. Once we transform the information into
knowledge, this knowledge is now usable and available for the data consumer. In this case
study, data consumers are the REP’s development department and the CEO.

3.3. Transformation of Knowledge into Wisdom

The stages of the framework implemented up to this point would allow the primary
goal initially established in the case study to be met: improving demand forecasting at
12-h intervals for a REP, disaggregated by market. However, the capacities and skills of
the REP development team and our research group allowed us to go a step further. The
training of professionals from both the REP and our research group was interdisciplinary.
Thus, with programming and algorithm implementation capabilities (DIKW hierarchy +
NIST framework), we also knew the global context of the operation of a REP within the
electricity grid (SGAM).

Beyond the operation, REP’s supervisors also knew about the most recent regulations
in the country’s electricity sector. With the ability to understand the implications and
results of the implemented framework with a deeper vision, the team experts identified a
further need with a more significant impact on the REP related to a new regulation soon to
come into force: CREG 100/2019.

According to this regulation, each REP must report to XM their demand forecasts for
each market where they operate instead of doing it as a whole. XM is the national entity
in charge of the operation of the Colombian electrical system (https:/ /www.xm.com.co
(accessed on 7 August 2021)). Each REP should present their predictions daily for each
12-h interval of the day. They may have a maximum prediction error per interval of 4%.
Otherwise, XM could penalize the REP according to the error measure in the demand
forecasting of each market [69].

At this point, the case study had expert knowledge from:

®  Our research team, who in addition to IT and data analytics skills, had a broad context
of the operation of AMI systems.

e  Operation and supervision team of the REP, who knew in detail the implication of the
new regulation and the benefit that our development could represent. They were also
in charge of supplying the necessary data to develop the case study and guarantee the
security and privacy policies of the REP’s information.

e The REP’s CEO, who knew the economic impact for the company, once the new
regulation came into effect. The CREG 100/2019 regulation implies potential finan-
cial sanctions in case of exceeding the margin of forecasting error established in
the regulation.

The multidisciplinary knowledge of the team and the deeper understanding of the
results were evident in the implementation of this pilot. Furthermore, the team provided
the CEO with the necessary elements to make a data-driven decision: to make a more
significant investment in the implementation of a new business platform. This new business
platform would aim to implement the second phase of this pilot to get a more robust
forecasting application aligned with the CREG 100/2019 requirements that will come into
effect soon. The proposed investment for this platform will generate benefits for both
the company and its customers. At the same time, it will promote cooperation between
research institutions and private energy companies.

We see how the elements present in the team match the roles that require deeper knowl-
edge to give decision support according to Figure 13: executives, supervisors, engineering
and IT teams. This accounts for the importance of the levels of competence/expertise of
critical roles in certain specific areas of a Smart Grid, as in this case, informed decision-
making. Recalling Figure 8, we can also note how, at these higher levels, human judgment
derived from experience and a broad context (both technological and business) has greater
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value, as opposed to the initial transformations of raw data, where the greatest workload
falls. clearly on the computing infrastructure.

Figure 15 presents each element of the framework depicted in Figure 12 with the
elements from the case study presented in this paper. Gray arrows indicate the correspon-
dence of each stage on the proposed framework. The REP team initially defined the goal as
a pilot project for load forecasting based on measurements from smart meters. This goal
corresponds to a goal in the SGAM business layer.
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Figure 15. The stages of the case study mapped on the proposed Big Data/Data Analytics framework.

The expertise and skills of the human team provided enough supplies for these
corporate-level decisions. As we presented in previous sections, the ability to apply
concepts from one domain to new situations or problems allowed the transformation
of knowledge into wisdom and informed decisions that benefit the REP’s work in a
broader context. The smart meter and customer data platforms acted as data providers
for the SGAM function layer. That same data provision is the initial input of the DIKW
hierarchy. Using the NIST framework, data was transformed, first into information and
then into knowledge.

Initially, we built a data warehouse implementing an ETL stage to store relevant
information for the case study. Later we used XGBoost-based algorithms to implement
forecasting models and generate knowledge. We used Tableau dashboards to facilitate
the access to results by end-users. Finally, thanks to the human expertise and skills of the
team, we reached a greater understanding of the benefits of this application and its possible
impact related to new regulations of the electricity sector. This acquired wisdom made it
possible to make informed decisions to create new investments to strengthen the REP’s
analysis platforms in the second phase of the pilot project.

4. Conclusions

The evolution of the electrical grid in Smart Grids opens the way to new infrastructures
implementations, including AML. Its deployment makes available a volume of data that
grows as fast as AMI project implementations. This availability of data from Smart Meters
(AMI data) requires tools and platforms for its processing, analysis, and use through fields
of study, such as Big Data and Data Analytics. In this regard, several authors have presented
study approaches and applications. Some applications include AMI data processing
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tools and their integration with emerging technologies, load profile identification, load
forecasting, demand response programs, and loss detection.

The literature shows that several authors have studied Big Data/Data Analytics in
AMI and Smart Grids. Some of them proposed different approaches and methods to
perform data transformation [7,22,40,70-73]. However, most of the works only achieved
data analysis (methods) with a specific purpose, e.g., load forecasting, loss detection, or
load profiling, without a relationship to the global view proposed by SGAM (architecture).
This lack of connection implies that, although such works meet an analysis goal from
raw data to knowledge, they do not reach wisdom, in the sense that the results are not
always applied to new domains or situations to make more in-depth decisions. The most
important contribution of this paper is a framework that allows the evolution from raw
AMI data to applied wisdom in different areas of a Smart Grid.

This is achieved through a framework that joins the vision of three perspectives: first,
an architectural view for the deployment of AMI in the context of Smart Grids; from
this architecture, business goals can be defined at the top level, down to the physical
components required for AMI operation. The architecture establishes a level where one
has access to platforms that act as the source of AMI data. The second perspective involves
the transformation of the AMI data. This transformation includes using Big Data/Data
Analytics techniques and their life cycle to give value to the data and transform it into
knowledge through different available methods. Finally, human expertise and skills appear
in the third perspective as binding element of the framework.

This provides a last evolution step from knowledge to wisdom as the ability to include
human judgment, reasoning, and higher level of understanding. This superior transfor-
mation increases the value of developments related to AMI data. The new generation
of electrical networks requires multidisciplinary teams to achieve such a deeper under-
standing of Smart Grid processes. Likewise, a greater understanding will allow informed
decision-making with a global impact that benefits different Smart Grid value chain links.

The implementation of a case study with real data allowed us to validate the frame-
work. The case study shows that all its components play an essential role in achieving
results that globally benefit the operation of a company in the electricity sector, in this case,
a REP. The smart meter and customer data platforms acted as data providers for the SGAM
function layer. That same data provision was also the input of the DIKW hierarchy. We used
the NIST method to transform raw data into knowledge: fisrt, we implemented and ETL
and a data warehouse; later, we used XGBoost for perform forecasting. We used Tableau
dashboards to deliver results to end-users. The pilot project implemented in this case study
reduced the forecasting MAPE from 38% to 8.9%, considering the short development time.

Future investments, deployed from the transformation of raw data into wisdom, will
further improve the results of this application. Finally, using the human expertise and
skills of the team, we reached a greater understanding of the benefits of this application
and its possible impact related to upcoming regulations in the electricity sector. This
human judgment was the product of the support that our team was able to provide to
make an informed decision. This shows that our application case study not only delivered
knowledge (as a forecasting model) but that a higher level of concept application was
reached with a wider impact for the benefit of the REP.

As future works, we propose the application of this framework in other scenarios of a
Smart City, taking advantage of the great availability of data from various platforms: energy
efficiency, smart mobility, smart metering (water, gas), and smart billing, among others.
This could mean an optimization of resources and a change in the operating dynamics of
the entire Smart City scheme. The global objective of a Smart City should be the optimal
and efficient operation of a system of systems where the availability of data in real time
has become a differentiating factor.

In addition, the inclusion of various artificial intelligence techniques can be considered
to broaden the spectrum of data transformation. We achieved this by including other
sources of information, such as data from social networks, thus, allowing users of a smart
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city to be a stronger input in our framework. Some approaches to dealing with this type of
data could be Natural Language Processing (NLP) or sentimental analysis. Although the
paper leaves open the possibility of including different types of data processing, there is
still room for subsequent validations that include distributed processing platforms or case
studies more focused on data privacy and security.
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