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Big Data Systems: A Software Engineering Perspective

ALI DAVOUDIAN, Carleton University, Canada

MENGCHI LIU, South China Normal University, China

Big Data Systems (BDSs) are an emerging class of scalable software technologies whereby massive amounts

of heterogeneous data are gathered from multiple sources, managed, analyzed (in batch, stream or hybrid

fashion) and served to end-users and external applications. Such systems pose specific challenges in all phases

of software development life cycle and might become very complex by evolving data, technologies and target

value over time. Consequently, many organizations and enterprises have found it difficult to adopt BDSs.

In this paper, we provide insight into three major activities of software engineering in the context of BDSs

as well as the choices made to tackle them regarding state-of-the-art research and industry efforts. These

activities include the engineering of requirements, designing and constructing software to meet the specified

requirements and software/data quality assurance. We also disclose some open challenges of developing

effective BDSs, which need attention from both researchers and practitioners.

CCS Concepts: • Information systems� Information integration;

Additional Key Words and Phrases: Big Data, Big Data systems, Software engineering, Requirements engi-

neering, Software reference architecture, Quality assurance
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1 INTRODUCTION
Since 2011, the ease of data collection and storage along with the growing number of Big Data

technologies and affordable infrastructures have severely motivated many organizations to intensify

their business value by launching Big Data (or data-intensive) systems [Trends 2020; Turck 2018]. As

Fig. 1 shows, data processing pipeline in a typical BDS aims at extracting meaningful insights from

Big Data through several stages and supporting functionalities, where data mainly flow from left to

right [Chen and Zhang 2014; Hu et al. 2014]. Each stage is a collection of similar functionalities. In

addition, these stages are not necessarily mandatory and sequential. For example, in order to satisfy

the heavy timeliness for stream processing, data cleansing can be left out which means accepting

more approximate results in exchange for low latency. We elaborate each stage in the following.

– Data ingestion, which extracts raw data either static (which do not move and require periodic

synchronization) or streaming, from various data sources such as web servers and database

management systems (DBMSs). The batch extraction functionality acquires static data (e.g.,
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Fig. 1. Data processing pipeline in a typical BDS

relational tables or Hadoop files) through some connectors such as massive data transfer protocols

(e.g., Hadoop’s copyFromLocal
1
or FTP), drivers for specific protocols (e.g., Apache Sqoop

2
), and

APIs provided by the source application and web-crawlers. The collected static data may be

temporarily stored in the Batch temp data store. The stream extraction functionality usually

acquires streaming data (e.g., log data) by subscribing to a streaming API
3
(e.g., tweets in JSON

format that are collected from Twitter Streaming API
4
). The collected streaming data may also be

temporarily stored in the Stream temp data store such as Apache Flume
5
, Apache Kafka [Kreps

et al. 2011] and Amazon Kinesis
6
.

– Data loading and preprocessing, where parts of the extracted, unprocessed data which are either

not suitable for further processing or not trustworthy might be filtered out by the data filtering
functionality. This can help to decrease either the amount of data stored or the total uncertainty

of the data [Agrawal et al. 2012]. Compressing data, before transferring and loading activities,

can also improve efficiency. Note that either the compression or filtering of streaming data is

considered as stream processing. The above preprocessed data may be transferred and loaded

from the temporary data stores into the Raw data store for further processing and analysis.

For example, Hadoop Distributed File System (HDFS) [Shvachko et al. 2010] for the storage of

1
https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/FileSystemShell.html#copyFromLocal

2
http://sqoop.apache.org

3
It pushes data to the client, when they are available. This API significantly reduces the network latency by maintaining

a persistent connection, whereby the client does not need to pull newer data by sending frequent requests to the

server.

4
https://developer.twitter.com/en/docs

5
https://flume.apache.org

6
https://aws.amazon.com/kinesis/
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batch data, as well as Apache Cassandra [Lakshman and Malik 2010] and Apache HBase
7
for the

storage of streaming data [Costa and Santos 2016; Santos et al. 2017a].

– Information extraction, which aims at imposing a structured format on raw data, that is suitable for

analysis. This includes methods for parsing and extracting information from semi-structured data

(e.g., machine readable HTML or XML) [Sleiman and Corchuelo 2012], as well as more complex

methods, such as natural language processing [Lewis and Jones 1996], text analytics [Gupta et al.

2009] and ontology learning [Buitelaar et al. 2005] for classification and entity/relationship extrac-

tion over unstructured data [Balke 2012]. The classification component classifies unstructured

data in various dimensions such as the extraction of a topic. The entity extraction component

identifies real-world entities and categorizes them (e.g., as products or persons). The relationship

extraction component extracts facts or relationships (e.g., represented by RDF
8
triples) among

identified entities. This is usually limited to a given context where possible entity types are

known in advance and ontologies are used to specify possible relationships between entity types.

– Data cleaning, which refers to the handling of quality issues originated from a single dataset

[Rahm and Do 2000]. This is the task of value completion, inconsistency correction, outlier

detection and entity resolution components [Bauer and Günzel 2013]. The value completion

component uses statistical and Machine Learning (ML) [Mitchell 1983] techniques along with

the derivations of values from other attributes to fill incomplete and empty attributes’ values.

The inconsistency correction component prevents the violation of either dependencies between

entities or the constraints on their attributes. The outlier detection component exploits distance-

based, statistical model-based, ML-based and context-aware techniques for the identification

and correction of abnormal data. The entity resolution component identifies unique entities

and merges the identical ones [Elmagarmid et al. 2006; Papadakis et al. 2020]. This resolution

is easy when identical entities have the same value for the corresponding keys (or even other

attributes). Otherwise, it needs to use entity matching techniques, whereby either identified

entities with different names (or synonyms) are merged, or different entities with the same name

(or homonyms) are distinguished [Fan et al. 2009].

– Big data integration, which aims at providing a unified view and query interface over hetero-

geneous datasets from many autonomous data sources [Doan et al. 2012; Dong and Srivastava

2015]. Data integration frameworks are mainly classified into materialized and virtual integration

as the following:

• Materialized integration, which mainly refers to Data Warehouse (DW) [Kimball and Ross

2011], physically integrates the extracted contents of OnLine Transaction Processing (OLTP)

data sources using a common format, usually the relational model. Here, integration means

defining a target database scheme together with a set of Extract-Transform-Load (ETL) jobs

(or procedural mappings) that regularly collect data and populate the target DW. This leads

to efficient query processing and physical independence among the DW and the sources

of data; however, there are some issues such as out-of-date results, synchronization delay,

costly evolution to adapt to changes in the business environment and the complexity of ETL

development to deal with cleaning and transforming data as well as managing data refreshment

[Hull and Zhou 1996].

In order to transform and analyze massive amounts of heterogeneous data more quickly,

the database community is making a transition from classical DW to the novel concept of

7
https://hbase.apache.org

8
http://www.w3.org/TR/rdf-primer/
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Data Lake (DL) [Abadi et al. 2020]. Despite DWs that follow an approach of schema-on-

write with a relational view of data, DL solutions adopt a schema-on-read approach [Chessell

et al. 2014; Suriarachchi and Plale 2016; Terrizzano et al. 2015]. In this regard, a DL collects

the ingested contents of heterogeneous data sources, in their native formats, in a common

repository. This repository is a massive storage system that is mostly based on a distributed

file system (e.g., HDFS); where data are processed in parallel, typically using the MapReduce

model [Dean and Ghemawat 2008]. DLs can be used for OnLine Analytical Processing (OLAP)

and business analytics (similar to DWs), as well as batch and real-time data analytics using Big

Data technologies.

Unlike the extreme flexibility of current practical DL systems, there is an unknown semantics

(or metadata) of the stored data, which prevents an efficient integrated query processing. This

entails providing a functionality for the management of metadata (e.g., schema information)

and a uniform query interface in some DL solutions [Hai et al. 2016; Quix et al. 2016; Walker

and Alrehamy 2015]. This functionality should be able to extract implicit and explicit metadata

from the imported data and the corresponding sources into a unified metamodel.

• Virtual integration, which can be regarded as an inheritor of the well-known mediated [Wieder-

hold 1992] or federated frameworks [Elmagarmid et al. 1999], defines a global (or mediated)

schema providing a view over heterogeneous data sources [Langegger et al. 2008]. Here, queries

expressed on the global schema are automatically translated to queries that are sent to and per-

formed in the underlying sources of data. It is followed by collecting the results and assembling

them into the answers of queries. The integration task here is to define declarative mappings

in order to make relationships among the global schema and the underlying data sources.

These mappings are performed through the definition of views based on two main paradigms:

(1) Global-As-view (GAV) and (2) Local-As-View (LAV); that directly dictate how the queries

are handled [Lenzerini 2002]. In GAV, the elements of the global level are defined as queries

over source schemas. This provides simplicity in answering user queries as they just need to

be unfolded to the sources. However, the mappings are invalidated by changes in the source

schemata. In contrast, in LAV, local concepts are defined as queries over the global schema.

This suites dynamic environments where source schemata change a lot. However, answering

queries is a computationally complex task as they need to go through a more complex process

of rewriting.

A well-known method of virtual integration is Ontology-Based Data Access (OBDA) [Poggi

et al. 2008], which follows the GAV paradigm. This is based on decoupling of intensional data

in the sources and extensional data (i.e., schema) in an ontology. The most notable approaches

to OBDA exploit generic reasoning in Description Logics (DLs) for query rewriting. In this

regard, an OWL2 QL
9
ontology, that is built upon DL-Lite family of DLs, is used to encode the

global schema.

The virtual integration of data results in no cost for freshness, synchronization and space.

Furthermore, there are growing numbers of scenarios where the physical transfer of data is

either illegal (due to the privacy of data) or prohibitive (due to the hidden data behind APIs).

However, there are some issues such as showing poor performance of queries, figuring out the

structure and quality of data sources, dynamic modification of a global schema by changing

the availability of underlying sources of data, query optimization with respect to the global

schema and being impacted by the unavailability of data sources. This architecture typically

exploits the caching and reusing of query results in order to address the poor performance of

queries [Gessert et al. 2017; Zakhary et al. 2017].

9
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/#OWL_2_QL
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The techniques of conventional data integration aim to integrate a small number (in the order

of tens or less) of structured data sources where metadata (e.g., views or schemata) for data

integration are provided [Halevy et al. 2006]. However, Big Data integration have brought new

challenges as integrating a huge number of diverse (even unstructured) sources of data and

building a global schema might be very hard, or even unattainable [Bleifuß et al. 2018; Golshan

et al. 2017]. The huge number of data sources can be tackled by integrating a smaller number of

related ones. This entails building a searching system over the collection of data sources, which

provides services such as locating all sources which are related to a specific query, providing

useful information about each data source, finding similar data sources, making an integrated

global view of all related data sources and monitoring all data sources [Golshan et al. 2017].

– Data analysis, which contains all functionalities that aim at deriving meaning and insights from

data. [Bertolucci 2013] classified data analysis into the following three levels, based on the

analysis depth:

• Descriptive analysis, where the demographics of the observed data are portrayed via techniques

such as reporting and OLAP. In other words, it answers the questions: “what happened?” and

“why did it happen?
10
”. Common examples include reports, querying, data visualization and

dashboards.

• Predictive analysis, where the probability of an event to be happened in the future is forecasted.

It exploits data mining, statistical analysis, ML and probabilistic models over observed data to

detect patterns and recognize relationships in data. In other words, it answers the question

“what might happen?” in the future. A common example is customer behavior forecast.

• Prescriptive analysis, which is closely coupled with optimization, uses high level modeling tools

to improve decision making by predicting the possible consequence of future actions before

they are taken. In other words, it answers the question “what should I do?”. A common example

is identifying optimal solutions for resource allocation [IBM 2017]. Although the majority

of efforts on data analysis is currently focused on descriptive and predictive analysis [den

Hertog and Postek 2016; Habeeb et al. 2018; Larose 2015], prescriptive analysis is increasingly

gathering research interest according to Gartner Inc. [Sapp et al. 2018]. A survey [Lepenioti

et al. 2019] investigates state-of-the-art literature on prescriptive analysis, existing challenges

and future directions.

The stream analysis component analyzes data while they are flowing and accordingly reacts

to the results (e.g., sending some alerts to users). The analytical results can be saved back to

the initial data stores (to be seen by their users) or stored in a distinct Stream analysis results

store. As streaming data are always incomplete and unknown before execution, their analysis

(via techniques such as sketching and approximation [Babcock et al. 2002; Muthukrishnan 2005])

is different from the deep analysis of static data. However, the stream analysis task can be

accelerated by exploiting partial results, models and rules precalculated by the analysis of static

data.

– Data loading and transformation, which transform (i.e., cube generation) and load the results of

the data analysis stage into the Serving data store.

– Data visualization, which is typically the access point (via the user and application interfaces) to

the data stored in the Serving data store . The visualization of data can be performed via reports,

dashboards, graphs, end-user applications (e.g., mobile applications) and so on.

10
This is related to diagnostics analysis which is an extension of descriptive analysis, where the root causes of detected

issues are investigated.
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– Data storage, which includes all data stores along the data processing pipelines, either long-term

or temporary. Note that in Fig. 1, each data store is shown along with the corresponding stage(s).

– Metadata management, which refers to the extraction and storage of metadata (i.e., data describing

other data or systems) that are necessary for data management activities [Ceravolo et al. 2018].

Such metadata may describe (I) the structure of stored data, (II) the processing steps which either

were conducted or still need to follow, (III) the provenance of each data item (when the extraction

happened and fromwhich source) and (IV) data status such as archived, purged or active. Metadata

extraction is performed by taking into account all data sources and storage areas within BDS

(e.g., using the XML Metadata Interchange (XMI) format and extracting schema definitions form

a relational database). Metadata about data sources (e.g., timeliness and completeness) might be

manually prepared. This is discussed further in [Michael and Miller 2013; Soares 2013]. Metadata

storage is simply providing a centralized repository dedicated to storing all metadata. This also

requires establishing a metamodel of metadata (e.g., the Dublin Core standard [Miller and Mork

2013]).

– Data life-cycle management, which consists of data creation and discard activities throughout its

life cycle. This is performed by using rule-based methods, such as data compression, discarding

and archiving of stale data [Soares 2012].

– Data security and privacy management, which ensures protecting information against denial-

-of-service attacks and unauthorized access/modification of data by means of authentication

and authorization, data anonymization and access tracking strategies. Authorization and au-

thentication require providing identification traditionally through usernames and passwords

(assigned to each authorized user) and can limit the ability of the user for searching and extracting

data. Access tracking which is based on authorization and authentication necessitates logging

information such as who request access to which datasets, how data is manipulated during each

access and whether the access request is valid or not. The data anonymization is the process of

hiding identity or sensitive data from original data before getting presented to end-users. Note

that cross-references which are emerged after merging several data source may deanonymize

data
11
[Machanavajjhala and Reiter 2012].

The illustrated complexity of BDSs, which is due to the intrinsic characteristics of Big Data [Laney

2001; Uddin and Gupta 2014], has challenged the well-established development process of traditional,

structured data systems [Chen et al. 2015; Gorton and Klein 2015]. However, as indicated in economic

reports [Davenport 2019; Goasduff 2015; Nadkarni 2020; Sharala 2019] and scientific literature

[Anderson 2015; Baresi et al. 2015; Kumar and Alencar 2016; Laigner et al. 2018; Madhavji et al.

2015], this complexity requires using novel or revised techniques of Software Engineering (SE)
12
in

the development of BDSs. This is reflected in recent studies which state that many organizations

are failing to derive business value from their data. After surveying 300 organizations, Kelly and

Kaskade [Infochimps 2013] reported that 55% of BDSs had not been completed and many others had

fallen short of their objectives. In addition, many companies are still stuck in the pilot phase and

only 15% successfully developed and deployed their BDSs, according to a Gartner report [Moore

2015; Van Der Meulen 2016]. Later, an Infoworld article [Patrizio 2019] noted that nothing has

changed and failure rates are still high.

In fact, the rapid growth of BDSs is generating a SE paradigm shift from traditional, functionality-

driven software development style ([Bourque et al. 2014]) towards modern, data-driven style. More

11
Including all the aforementioned functionalities in a BDS may overburden the overall performance of system. For

example, [Interlandi et al. 2015] show a 30% overhead on performance by using automatic data provenance.

12
It refers to the “systematic application of scientific and technological knowledge, methods and experience to the design,
implementation, testing and documentation of software systems” [ISO 2017].
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intuitively, beyond functionality, the achievement and added value of developed systems is tightly

coupled with the proper identification of data (and the corresponding quality) requirements with

respect to Big Data characteristics. Subsequently, satisfaction of the extracted requirements entails

the selection and orchestration of (rapidly evolving) Big Data technologies and frameworks, which

in turn pose an enormous challenge for software architects. They should ensure that developed

BDSs can scale and evolve to meet long-term requirements. On the other hand, benchmarking or

testing in the context of BDSs requires huge amounts of varying test datasets, where there is often

a lack of known set of inputs and expected outputs.

Given such a data-centric environment, how the requirements should be specified for an end-user

system utilizing Big Data? How the system should be structured, or which reference architecture

should be selected for processing a voluminous amount of structured and unstructured data?

Similarly, how the software/data quality assurance should be done differently? This situation has

led to some existing research challenges (and also opportunities) that need to be tackled by the

Software Engineering and Computer Science (CS) research areas in order to create new or improved

BDSs within budget on time. However, the available literature mostly focuses on technical aspects

of Big Data or specific platforms [Davoudian et al. 2018; Ferrer et al. 2019; Heidari et al. 2018;

Mazumdar et al. 2019; Oussous et al. 2018; Siow et al. 2018], and there is no comprehensive survey

to the best of our knowledge on existing SE methodologies and tools for the development of

BDSs. Hence, we take a software engineering perspective and investigate the existing research and

industry efforts in three sub-disciplines of software engineering, i.e., requirements engineering,

architecture design and quality assurance in the context of BDSs.

The rest of this survey is organized into five sections. In Sections 2, we present state-of-the-art

of Requirements Engineering (RE) research in the context of BDSs. Section 3 introduces some

architectural requirements regarding Big Data characteristics and reflects on state-of-the-art BDS

reference architectures evaluated by the requirements. In Section 4, we present state of the research

and hot topics in the area of ensuring BDS quality. Section 5 concludes the paper and presents

the exiting challenges of developing BDSs with respect to the three sub-disciplines of software

engineering.

2 BDS REQUIREMENTS ENGINEERING
The term software requirement refers to either a function that must be performed by a system

or system element (a.k.a. functional requirement) [Geraci et al. 1991] or a required constraint on

the functional effects of the software (a.k.a. non-functional or quality requirement) [Siegelaub

2007]. Identification of requirements is one of the first essential steps in IT projects. Requirements

Engineering (RE) refers the use of systematic and repeatable methods to ensure the completeness,

relevance and consistency of requirements [Sommerville and Sawyer 1997]. It consists of such key

activities as the elicitation of use-case scenarios, the analysis and specification of requirements, the

validation of requirements, the prioritization among the requirements for implementation and the

management of requirements throughout the system’s life cycle [Van Lamsweerde 2009]. These

activities build a bridge among the actual needs of stakeholders (e.g., users, customers, developers

and businesses) and the offered capabilities of the target software.

Although RE has long been recognized as a mature discipline in Software Development Life

Cycle (SDLC), it is currently passive in the development of BDSs. In the following, we elaborate

some major RE challenges in the context of BDSs.

– Integrating Big Data characteristics in requirements. As a cross-functional discipline, RE supports

all SDLC phases [Sommerville 2009]. Accordingly, it supports the design of BDSs by facilitating

the selection of Big Data technologies and frameworks. Currently, as such technologies are being
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developed and introduced into the market at a very rapid rate, they should be matched with

the requirements of BDSs, by taking into account some engineering trade-offs. This entails to

properly incorporate Big Data characteristics in the definition, analysis and specification of

requirements, which in turn leads to an accurate selection of those technologies and frameworks

[Arruda 2018; Madhavji et al. 2015]. For instance, we can refer to the rationale behind selecting

Cassandra (from a wide range of NoSQL stores [Cattell 2011; Davoudian et al. 2018]) in project

EPIC
13
, in order to store a huge amount of tweets (Volume) with evolving schema (Variability)

[Anderson 2015]. Cassandra follows a wide-column data model, whereby data are automatically

partitioned, both horizontally and vertically, across the cluster (i.e., meeting Volume). In addition,

its flexible schema allows the storage of JSON objects (i.e., meeting Variability). As another

example, a requirements analyst may need to effectively use a newly arrived customer’s video

footage (Velocity) in a shopping store along with possible prior experiences (Volume) in the

store. Hence, time-sensitive and personalized discounts are given in real-time to the customer at

particular display points along the path where s/he might buy products.

– New requirements might be emerged from new data. Existing RE strategies focus primarily on early

object-oriented analysis of finite datasets with a known structure. They are therefore not prepared

to handle situations where new analysis opportunities might be facilitated by new data and

new desired outcomes (not known when analyzing the requirements) [Anderson 2015]. In other

words, data observations can refine current requirements or create new ones. This means paving

the way for some functionalities to be realized differently or even fresh functionalities. This also

makes it necessary to exploit highly iterative and agile development approaches (as in [Chen

et al. 2015]), whereby the application domain of the system and user needs
14
are evolutionary

recognized.

– Linking requirements to business goals. Software requirements, as a significant way of communi-

cation in IT projects, are strongly related to project management, business modeling, technical

system design and architectural resources [Hiisilä et al. 2016]. This requires linking the RE

activities to business goals [Berenbach et al. 2009]. Furthermore, while not all business goals

relate to the system’s quality requirements, researchers claim that such requirements should

be generated from business goals and concerns [Clements and Bass 2010]. Accordingly, BDS

developers must address the strict connection between software requirements and business goals.

– Complexity. Due to the aforementioned complexity of BDS, where several dynamic components

interact in a distributed environment, traditional RE techniques, tools, templates and gathering

artefacts cannot be applied very well [Madhavji et al. 2015].

In this section, the state-of-the-art of RE research are investigated in the context of BDSs (see

Table 1), where requirements engineers and business analysts need to know about the following

relevant concepts [Arruda and Madhavji 2017; Fox and Chang 2014; NIST 2018].

13
It is a research project investigating how people use social media in times of crisis [Palen et al. 2010; Schram and

Anderson 2012].

14
For example, do the users require interactive data access or batch-generated reports?; is the information presented by

the reports on the entire dataset or on time-windows within the dataset?; is it required to have 24/7 data collection?;

are the sources of data bursty or steady?; how many sources of data are there?; and are the results of analysis stored?.
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Table 1. State-of-the-art of RE research in the context of BDSs

Paper RE activity Focused require-
ment
category

Contribution Empirically
validated

[Lau et al. 2014] Elicitation Functional A conceptual architecture for requirements
elicitation

Yes

[Chen et al. 2016, 2015] Analysis Quality A method for BDS development Yes

[Jutla et al. 2013] Analysis Quality UML extension for privacy requirements analysis No

[Sachdeva and Chung 2017] Analysis Quality An approach for handling quality requirements
for BDSs in Scrum

Yes

[Noorwali et al. 2016] Specification Quality An approach for integrating Big Data
characteristics & quality requirements

No

[Arruda and Madhavji 2019] Specification Quality A tool for modeling quality requirements No

[Al-Najran and Dahanayake 2015] Specification Data specific A requirement specification framework for
data collection

Yes

[Narayanan 2016] Specification Data specific Two templates to specify data requirements No

[Otero and Peter 2014] Specification Functional,
concept-drift
-aware

State-of-the-art No

[Madhavji et al. 2015] Specification Functional State-of-the-art No

[Eridaputra et al. 2014] Modeling All A requirement specification model based on I*
& KAOS tools

Yes

[Arruda and Madhavji 2017] Modeling Quality An RE artifact model No

[Bersani et al. 2016] Validation Not specified A requirement validation tool Yes

[NIST 2018] Not specified All NIST interoperability framework No

– Big Data scenarios, which describe a specific use of the system with regard to Big Data charac-

teristics. These scenarios, which are identified from business goals
15
, are used to derive Data

specific requirements, quality requirements and constraints
16
.

– Data specific requirements, which can be categorized as follows:

• Data capability requirements, which address the network and storage requirements. For example,

system needs to support PostrgeSQL and MongoDB in a high-speed InfiniBand network.

• Data source requirements, which refer to the different characteristics of data sources, such as

file formats, data size, growth rate and being static or streaming, which in turn address the

BDS data ingestion stage. For example, system must collect data from sensors and cloud data

sources.

• Data transformation requirements, which address the BDS data processing and analysis stages.

For example, system must support batch and rand data analysis.

• Data consumer requirements, which address the BDS visualization stage. For example, system

must support processed results in text and table formats.

• Data life-cycle management requirements, which address the BDS data life-cycle management

functionality. For example, system must support data quality curation consisting of format

transformation, data reduction, classification and clustering.

[Lau et al. 2014] propose a model-driven methodology of requirements elicitation (deployed

within a research project named Dicode
17
) in the context of BDSs. It includes three steps: first,

15
They describe what an organization expects to achieve over a particular period of time. They are linked to the

organization’s needs rather than customers’ needs [Clements and Bass 2010].

16
They restrict or dictate the project team’s actions such as schedule, budget, quality, scope, resources and software

license restrictions [Siegelaub 2007].

17
http://dicode-project.cti.gr/site/
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eliciting requirement from scenarios, second, exploiting (individual and collaborative) sense-making

models (e.g., iterative cognitive process conducted by people to create a representation of a knowl-

edge space that is useful for achieving a goal) and third, developing a conceptual generic architecture

for analytics of Big Data to bring user and technology perspectives together. Sense-making models

have been applied to understand Big Data analytics’ cognitive complexity where components that

exploit human and machine intelligence are included. Two instantiates (biomedical research and

social media domains) of the proposed architecture are also presented by the authors.

[Chen et al. 2016, 2015] propose a methodological framework for BDS development, whereby data

modeling (conceptual, logical and physical) techniques, architecture analysis as well as technology

selection are integrated in SDLC. Although this approach is specific for system design, it implements

an RE phase for the analysis of requirements that consists of the following activities: first, business

goals are captured, second, concerns, constraints and drivers of the design are identified, third,

quality attribute scenarios are defined and fourth, based on the quality attributes scenarios, Big Data

scenarios are identified. This method suggests Big Data templates in order to log data architecture

elements, such as data volume, variety and velocity, data quality, frequency of read/write and

time-to-live as well as queries, captured for each source of data. The obtained requirements affect

the subsequent selection of architecture, data model, technologies and data access pattern.

Agile methodologies [Highsmith and Cockburn 2001], such as Scrum [Sutherland and Schwaber

2010] and Extreme Programming (XP) [Beck and Gamma 2000], allow the rapid delivery of a working

software that satisfies functional requirements and adapts to customer feedback and requirements

changes. However, in order to reduce time to market, it is either probable that quality requirements

will be ignored or introduced late, hence resulting in the failure of software projects [Mead et al.

2008; Paetsch et al. 2003]. Accordingly, [Sachdeva and Chung 2017] introduce a method to deal with

the Performance and Security requirements of BDSs residing on the cloud and developed through

the Scrum agile framework. This method treats Performance as spikes and acceptance criteria of

user stories and Security as system functionalities (or collection of user stories) introduced at the

start of the process of software development. The authors also present an industrial case-study in

Scrum, where the quality requirements’ issues are mitigated using the proposed method. Note that

agile professionals have not yet agreed on the meaning and the way to handle quality requirements

[Alsaqaf et al. 2019].

[Jutla et al. 2013] extend UML use-case diagrams with components of Privacy to assist software

engineers speed up the analysis phase of Privacy requirements in the context of BDSs. This is

implemented as the UML extension ribbon of MS Visio that is automatically loaded in Visual

Studio, whereby Big Data privacy services (e.g., anonymization) can be easily dragged and dropped

by software engineers into their UML diagrams. In a health sector application, the author also

demonstrates the usefulness of the extension by using an IBM Watson-like commercial use case on

Big Data.

By taking into account the issues presented by the characteristics of Big Data on quality require-

ments [Jensen 2013; Kadadi et al. 2014; Patil and Seshadri 2014; Sawant and Shah 2013; Youssef 2014],

a specification approach is proposed by [Noorwali et al. 2016], whereby the 4-V characteristics of Big

Data (i.e., Volume, Variety, Velocity and Veracity) are integrated with the specification of traditional

quality requirements (e.g., Availability, Performance, Security, Scalability and Privacy) in a unified

requirement description. These integrated specifications would permit various permutations of Big

Data characteristics along with quality requirements (see Table 2). The full requirement description

must specify the desired permutations. This approach necessitates a requirement analyst (in the

context of BDSs) to know about Big Data reference architectures, tools, libraries and technologies

in order to address Big Data characteristics. According to this work, [Arruda and Madhavji 2019]
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Table 2. Permutation examples of Big Data characteristics along with quality attributes

Characteristic of Big Data
× Quality attribute

Quality requirement description Rationale

Velocity × Performance Real-time data generated by global earthquake sensors
shall be processed by Apache Storm, Samza, or S4,
with a latency of 0.5 – 1.5 seconds.

In order to meet Performance requirements, high Ve-
locity streaming data need specialized processing en-
gines, such as Apache Storm, Samza, or S4, to be
routed, transformed and analyzed.

Variety × Security The Security of structured, semi-structured and un-
structured data, shall be ensured by exploiting VCAM,
IPAC and FIM methods respectively.

Data Variety incurs exploiting different access control
methods, such as VCAM, IPAC, or FIM, to ensure Se-
curity.

Veracity × Security
× Performance

Using the CMD, or FHE method, 50𝐾 tweets shall be
encrypted, queried and decrypted in 2.0 seconds.

Veracity is ensured by exploiting computationally in-
expensive Security methods such as CMD or FHE.

Variety × Availability N.R. (domain dependent) Variety does not affect the system Availability.

introduce QualiBD, a tool for modeling the quality requirements of BDSs. However, the tool has

not yet been empirically evaluated at the time of writing.

[Al-Najran and Dahanayake 2015] aim to enhance data ingestion process via reducing irrelevant

collected data. They provide a new requirements specification framework which identifies data

collection scenarios through a backward analysis process, whereby the properties of input are

defined based on the properties and context of the output. Elicited scenarios are characterized with

respect to their domain, spatial and temporal factor, search patterns, such as named entities, phrases

and keywords, as well as capturing and analyzing techniques. Accordingly, scenario-relevant data

are captured from the sources that meet the scenarios. This framework has been empirically tested

using quantitative experiments for measuring the relevance of Twitter feeds [Al-Najran 2015].

[Otero and Peter 2014] refer to a critical challenge in specifying testable or verifiable requirements

in the context of BDSs, as the predictive analysis of the incoming data is subject to concept drift

[Gama et al. 2014]. It refers to the unexpected changes overtime in statistical properties of the

target variable, that is supposed to be predicted by the model such as an ML algorithm, and results

in less accurate predictions.

[Eridaputra et al. 2014] introduce a new requirement specification model for BDSs through the

following three steps. First, eliciting generic requirements for BDSs (by taking into consideration

the 4-V characteristics of Big Data) including (I) huge capacity of database, (II) fine performance

of database, (III) structure and quality of data and (IV) guaranteed privacy and security of data.

Second, modeling the elicited requirements through the i* [Yu 2011] and KAOS [Kavakli 2002]

tools as parts of Goal Oriented Requirement Engineering (GORE) method [Van Lamsweerde 2001].

Third, using the models extracted from the tools as references for the modeling of both functional

and quality requirements. According to the authors, after applying the generic model to a BDS

for a government agency, 10 non-functional and 26 functional requirements were obtained whose

accuracy was further validated by stakeholders.

[Bersani et al. 2016] propose the DICE Verification Tool (D-VerT), that allows verifying safety

properties (e.g., whether the system topology reaches an undesired configuration) of a topology-

-based BDS. A topology is an abstract representation of the BDS, with two kinds of nodes: data

sources and operators implementing the logic of system (e.g., Filter, Aggregate and Join). The

verification is carried out on annotated UML models containing all the required data related to the

system topology. The tool supports both the checking of bounded reachability and satisfiability

checking, which are two distinct kinds of verification built on top of logical formalism. Through

the checking of bounded satisfiability, an input topology property is checked for executions that

violate the property. Through the reachability checking approach, an array-based system is used to

define the input topology, followed by verifying the system against a safety problem. This approach,
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whose result is either safe or unsafe, leverages an initial configuration, a formula defining the set

of unsafe states and a set of system transitions.

[Narayanan 2016] proposes two templates which can be used for supporting data specific

requirements: (I) a template for data acquisition and (II) a template for matching data to business

problems. NIST Group [NIST 2018] provides a consensus list of generalized Big Data requirements

extracted from 51 use cases of nine diversified BDS contexts. The requirements are divided into

seven individual groups, namely data source, data consumer, capabilities, privacy and security,

data transformation, life cycle management and other requirements. NIST Big Data Reference

Architecture is built using these requirements.

[Madhavji et al. 2015] introduce a new SE context model for BDSs, where various elements

such as business and client scenarios as well as corporate decision-making are taken into account.

Subsequently, as this model lacks RE process design, [Arruda and Madhavji 2017] propose the

creation of an RE artefact model, named BD-REAM, for BDSs. Based on this initial study, [Arruda

2018] has developed a SE context model for BDSs. At the time of writing, this research is still in

early stages of development.

According to the related works of RE, there is a lack of a requirements modeling language for

BDSs. The formal definition of such a language should allow the verification of generated models by

a corresponding tool. Furthermore, it is suggested to work on the automatic generation of functional

and quality requirements from the corresponding textual description. On the other hand, in some

works there is no empirical evaluation for the validation of the corresponding proposal. Therefore,

it is important to carry out more empirical studies in industry to get a better understanding of RE

activities in the development of BDSs. The definition of some functional requirements of a BDS

depends on the right specification of data requirements such as the need for various output file

formats for rendering, reporting and visualization, as well as advanced distributed data storage

[NIST 2018]. However, only two works in our investigation [Al-Najran and Dahanayake 2015;

Narayanan 2016] discuss the data properties (e.g., file formats, data types, data size, at rest or in

motion and rate of growth) as well as the necessity of the selection of right type of data. Nonetheless,

no concrete example of what a data requirement looks like is provided by the two papers.

As Table 1 depicts, most of the works address either the phase of requirements analysis or

specification. Elicitation, modeling and validation of requirements are discussed by only a few

works [Arruda and Madhavji 2017; Bersani et al. 2016; Eridaputra et al. 2014; Lau et al. 2014]. In

addition, no paper has been found addressing the phase of requirements negotiation, prioritization

or management. Overall, there is no significant amount of research on RE methods, processes and

tools. This is due to the fact that apart from Big Data characteristics, RE for BDSs has no difference

at its core with RE for any type of commercial data processing and analytics system.

3 BDS ARCHITECTURE DESIGN
Big data systems are inherently distributed systems whose technologies and frameworks are being

rapidly evolved. The architecture of such system is tightly coupled with data and deployment archi-

tectures [Gorton and Klein 2015]. Consequently, many challenges have arisen for BDS architects

and designers. In the following, we elaborate some major design challenges.

– Data architecture. The distribution of data results in a fundamental design challenge defined by

the CAP theorem [Brewer 2000; Fox and Brewer 1999] over three quality attributes (availability,

consistency and partition tolerance) – During a network Partition, a distributed data system

must make a trade-off between strong Consistency (i.e., every read request observes the most

recent update) and Availability (i.e., every read/write request receives a successful response

within a finite time). By taking this theorem into account, NoSQL stores have relaxed many core
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principles of relational database systems in order to attain high performance and availability. As

such, NoSQL stores adopt proprietary APIs, deliberately denormalized (and flexible) data models

and weak consistencies instead of the SQL standard, normalized (and schema-full) data models

and the strong consistency respectively.

Since in practice network partitions cannot be avoided by distributed systems, BDS architects

need to focus on the trade-off between (strong) consistency with availability. As a result, architects

must diligently evaluate candidate database engines and select the ones that satisfy application

requirements. This usually results in polyglot persistence — to solve a complicated problem by

splitting it into fragments whose associated datasets are stored in various database technologies

with different trade-offs between the quality attribute [Sadalage and Fowler 2012; Schaarschmidt

et al. 2015]. The results must then be integrated into a solution for hybrid data storage and

analysis.

– Deployment architecture. As BDSs are inherently distributed systems, the architects of such

systems have to explicitly deal with unpredictable communication latencies, partial failures,

consistency, replication and resource optimization (e.g., via elasticity and data compression).

These challenges are also exacerbated at scale. In other words, the rapid growth of data (to

and beyond petascale) has led to the growth of hardware resources to many thousands of

processing nodes and disks and possibly, the geographical distribution of data. This, in turn,

increases the probability of failure in hardware components and requires a resilient software

architecture whereby failures are gracefully handled with no interruption in the operations of

applications. However, many commonly used software architectures are not resilient at this scale

of deployment; where a resilient architecture preserves availability in case of disk failures or

network partitions and keeps replicas consistent via multi-master or master-slave protocols [Gray

et al. 1996]. In addition, such architecture limits failures by providing replicated and stateless

components which are also tolerant of dependent services’ failures.

– Architecture patterns and implementation stacks. Despite using a proven technology stack by

small data systems, there is a lack of well-established BDS architecture tactics and patterns
18
.

In addition, there is a fast evolution and growth of (proprietary and open source) Big Data

technologies which causes pressure on architects to learn and experiment with new technologies.

As such, BDS developers are often have to (I) integrate frameworks in an ad-hoc manner, (II)

select the corresponding technologies and (III) deploy them to scalable environments such as

cloud computing.

– Evolutionary and query-driven design. In small data systems, where the typical Create, Retrieve,

Update and Delete (CRUD) operations are merely implemented, there are mature methods, such

as Object/Relational (O/R) mapping and ordinary design solutions such as system’s persistence

layer. However, since BDSs usually approach technological boundaries, data handling has a great

effect on their architecture design. Therefore, queries discovered after requirements analysis

often drive the core of a BDS architecture [Anderson 2015]. This requires novel SE methods

which support the agile creation of query-driven architectures in a highly evolutionary manner.

In the early 1990s, OLAP was proposed by [Codd 1993] to express a new type of queries that

differ essentially from OnLine Transaction Processing (OLTP). By the end of 1990s, the reference

architecture of DW — consisting of OLTP and OLAP databases that are linked by the pipelines

of ETL — was widely known [Chaudhuri and Dayal 1997]. However, there were two issues: first,

developers realized the difficulty to build and maintain ETL pipelines [Boykin et al. 2014; Lee et al.

18
Although the community has been aiming for some time to collect Big Data patterns [Arcitura 2017], this research is

still in a rather immature state and is often based on some anecdotal blog posts.
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Table 3. Main requirements for a BDS architecture

Requirements
R1. Volume
R1.1 – A scalable storage and processing of massive datasets is provided.
R1.2 – Descriptive analysis is provided.
R1.3 – Predictive/prescriptive analysis is provided.
R2. Velocity
R2.1 – Streaming data are extracted.
R2.2 – Streaming data are processed in a (near) real-time manner.
R3. Variety
R3.1 – Heterogeneous data are ingested.
R3.2 – A machine-readable schema of the entire data is provided.
R3.3 – Semantic data interoperability conflicts are resolved.
R4. Variability
R4.1 – Adaptation mechanisms for schema evolution are provided.
R4.2 – Adaptation mechanisms for data evolution are provided.
R4.3 – Adaptation mechanisms for the automatic inclusion of new data sources are provided.
R5. Veracity
R5.1 – Mechanisms for data provenance are provided.
R5.2 – Mechanisms for the assessment of data quality are provided.
R5.3 – Mechanisms for tracing data liveliness are provided.
R5.4 – Mechanisms for data cleaning are provided.

2012; Lin and Ryaboy 2013]; and second, organizations had to use day-old data for decision making,

owing to the delay introduced by ETL pipelines and using nightly analytical processing.

By accelerating the pace of business, organizations started to conduct business intelligence on

fresher data. One solution was to increase the frequency of ETL (e.g., hourly); but it led to more

stress on unsteady ETL pipelines and high probability of passing the breakpoints [Cuzzocrea et al.

2018; Mishne et al. 2013]. This shows the inability of traditional DWs, that are just optimized for bulk

loading, to deal with real-time data
19
[Duggan et al. 2015]. This, in turn, has motivated to explore

alternative architectures that support Hybrid Transactional/Analytical Processing (HTAP) [Pezzini

et al. 2014] integrating analytical and transactional processing. Accordingly, today’s organizations

aims at using BDS architectures that (tightly) integrate batch and real-time processing, enabling

high performance and seamless querying over both historical and real-time data. In the following,

we introduce some BDS architectural requirements regarding the characteristics of Big Data. We

also reflect on state-of-the-art BDS architectures evaluated by the requirements. This facilitates

the design of architecture and the selection of commercial solutions or technologies for the BDS

development.

3.1 BDS Architectural Requirements
This subsection provides a list of requirements (inspired by [Agrawal et al. 2011; Chen and Zhang

2014; Gani et al. 2016; NIST 2018; Russom et al. 2011]) that a BDS architecture should fulfill. It takes

into consideration the five “V’s” of Big Data characteristics [Laney 2001; Uddin and Gupta 2014],

namely Volume, Velocity, Variety, Variability and Veracity that cover Big Data’s real nature. We left

out the Value characteristic as in the tight collaboration between the IT and business sides (for

developing a BDS), it falls on the side of business while the other characteristics mentioned above

fall on the side of IT (see Table 3).

19
Despite traditional DWs, Big DWs are a subset of BDSs. These modern DWs have encountered such progressive

research [Chen et al. 2017; Costa and Santos 2018; Di Tria et al. 2018; Santos and Costa 2016; Santos et al. 2017b],

which requires a separate survey on their underlying features.
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– Volume refers the ever-growing amount of data (up to 180 ZB by 2025). This requires providing

a scalable storage and processing of massive datasets (R1.1). This is usually tackled by the

distribution and parallel processing of data using cloud-based Big Data technologies. However,

despite the natural adaptation between descriptive analysis (R1.2) and distributed data manage-

ment solutions, it is still challenging to fit predictive and prescriptive analysis (R1.3) into such

distributed solutions [Tsai et al. 2015]. Note that in small data systems, data scientists generally

export datasets to specialized software (e.g., SAS
20
or R

21
) for running statistical methods outside

the system [Ordonez 2010]. However, it is not feasible in BDSs due to the Volume characteristic.

This requires to rethink about techniques of predictive and prescriptive analytics in order to run

in the parallel and distributed infrastructure by taking into account the principle of data locality

[Özsu and Valduriez 2011].

– Velocity refers to a high speed at which the data are produced, ingested, managed, analyzed and

served for meaningful decision making. This results in two major challenges. First, providing

mechanisms for the ingestion of streaming data (that can be based on a buffering model of sliding

window whereby the irregularities of data are made smooth) (R2.1). Second, achieving a (near)

real-time processing of streaming data by providing linear or sublinear algorithms (R2.2). This
requires providing a storage for the management of runtime data.

– Variety refers to the heterogeneity of ingested data in unstructured (e.g., plain text and video),

semi-structured (e.g., JSON and XML-based) and structured (e.g., relational tables) formats (R3.1).
Providing an efficient data analysis requires a query engine to understand what is exactly stored

(R3.2) and to resolve semantic data interoperability conflicts [Pagano et al. 2013; Vidal et al.

2019] (R3.3), which entail the management of rich and appropriate metadata [Ceravolo et al.

2018]. The former (R3.2) can be tackled through the previously mentioned materialized (e.g.,

rule-based data transformation) or virtual (e.g., OBDA) methods of data integration, whereby

schematic data conflicts (i.e., related to different schemata) are resolved. However, the latter

(R3.3) requires an effective integration of data to resolve other data interoperability conflicts: (1)

domain conflicts that are related to the different interpretations of the same domain, including

homonyms, synonyms, acronyms and integrity constraints; (2) granularity conflicts that are

related the different units of measurement and aggregation of data; and (3) completeness conflicts

that are related to different pieces of data belonging to the same entity.

– Variability refers to the evolutionary nature of ingested data [Duncan 2014]. Despite existing

a lot of mechanisms to handle schema evolution
22

(R4.1) and data evolution
23

(R4.2) in the

relational model [Curino et al. 2013], achieving so in the context of BDSs is more challenging

due to the schema-flexible nature of NoSQL stores [Lu and Holubová 2019; Meurice and Cleve

2017]. In addition, data sources may evolve during the life-cycle of a BDS (e.g., due to an outage

is a sensor grid, or adding a new social network). This requires handling the evolution of data

sources (R4.3).
– Veracity refers to the quality and trustworthiness of historical or even real-time streaming data.

It is accomplished through automated data governance frameworks consisting of the following

components [Alhassan et al. 2016; Khatri and Brown 2010]:

• Provenance of data (R5.1), which means tracing the lineage (or history of performed trans-

formation steps) of any data piece to the sources, whereby the corresponding computation is

20
www.sas.com

21
https://cran.r-project.org/

22
It refers to continuousmodifications in the structure or schema of ingested data, which incurs the continuous adaptation

of storage strategies, indices, queries and data instances to such changes.

23
It refers to the transformation of data with respect to the existing schema.
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reproduced. [McClatchey et al. 2015]. This requires the storage of metadata for all transforma-

tions carried out in a common data model, such as the Open Provenance Model [Moreau et al.

2011], for further study and exchange.

• The assessment of data quality (R5.2), whereby all data are tagged with quality characteristics

such as timeliness, completeness and accuracy among others (see Subsection 4.2). This prevents

using low quality data (e.g., those with missing values) and generating poor analysis outcome.

• Liveliness of data (R5.3), which determines when data are used. This feature can be used in

data life-cycle management (see Fig. 1).

• Cleaning of data (R5.4), which exploits a set of strategies, such as deduplication, to enhance

the quality of data (see Fig. 1).

3.2 BDS Software Reference Architectures
The aforementioned architectural requirements prove the inability of exploiting traditional Business

Intelligence (BI) architectures (relying on relational databases) in the context of BDSs. Such systems

exploit NoSQL stores [Cattell 2011; Davoudian et al. 2018] to store loosely structured data. NoSQL

stores, however, can not meet the respective requirements as stated for Variability and Veracity.

BDSs are presently being developed using architectural solutions that are adhoc and complicated.

Accordingly, BDS architects need to have an extremely high degree of expertise in order to select

and orchestrate some software components among lots of available and overlapping ones according

to the system requirements. This motivates exploiting some Software Reference Architectures

(SRAs)
24
that facilitate the development of concrete architectures, as the software architect knows in

advance the type of components and their corresponding interconnections. Hence, s/he is primarily

responsible to design a concrete architecture through technology selection for those components

with respect to the organizational needs and goals. In the following, we investigate six relevant

SRAs exploited in the context of BDSs and discuss the strengths and limitations of these solutions.

3.2.1 The Lambda architecture. Lambda tackles the Volume and the Velocity complexity dimen-

sions of Big Data [Laney 2001] by complementing a high-throughput and high-accuracy batch

processing component with a low-latency real-time processing one. It
25
is built on three major prin-

ciples: data immutability, fault-tolerance and recomputation [Marz 2011]. Immutability is assured

by replacing the CRUD update and delete tasks with the append functionality whereby incoming

data units are stored by timestamps and appended to an immutable, constantly growing Master

dataset. This immutable data model has three advantages: (I) by taking into account the entire

history, analytical applications can perform time series analysis (e.g., a social media application

can analyze old friendship relations that are not valid anymore); (II) fault tolerance since lost or

corrupted data (due to hardware failures and human errors) can be replaced by earlier data; and

(III) the simplicity of the system since there is no need for either indexing or locking data in the

append-only Master dataset. Assuming a query is a function that computes its result over the

whole Master dataset, a recomputing algorithm is required to obtain precise results with respect to

the evolved/fixed data or processing logic. Since recomputation comes at the cost of high latency,

Lambda uses precomputed results (batch views) to respond with low latency [Marz and Warren

2015]. Fig. 2(a) shows an overview of the Lambda architecture composed of a Batch layer, Speed

(streaming) layer and a Serving layer. As illustrated, incoming data split into two separate streams

captured and fed into the Speed and Batch layers in parallel. The Batch layer has essentially two

24
A reference architecture combines the “general architecture knowledge and general experience with specific requirements
for a coherent architectural solution for a specific problem domain” [Vogel et al. 2011].

25
http://lambda-architecture.net/
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Fig. 2. Six representative SRAs in the context of BDSs

functions: (I) it stores the Master dataset (e.g., via HDFS); and (II) it periodically recomputes batch

views (e.g., a DW) via a batch processing framework (e.g., Apache Hadoop), in order to combine

new data into the earlier existing views. This processing of historical data from the ground up also
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ensures fault tolerance. Batch views are written to a database at the Serving layer. This database is

optimized for serving batch writes and random reads.

Since recomputation takes a long time, the latest generated batch views might not contain the

latest data available to the system. This problem is tackled by the Speed layer which processes

only recent data. Unlike the Batch layer, the retrieved data are not written to a database, but

they are forwarded directly to a stream processing framework (e.g., Apache Spark Streaming
26
) to

incrementally compute real-time views. These views are written to a database at the Serving layer,

which is optimized for serving random writes and random reads. Merging the batch and real-time

views at query-time ensures a complete answer with regard to the latest information. Although the

Lambda architecture allows the fast processing of requests, there are some drawbacks.

– Developing, deploying and maintaining the same processing logic (evolving over time) for two

layers augments the architecture complexity.

– Using two processing frameworks increases the hardware footprint. Both layers must be kept

synchronous as by changing a particular view in one layer, the corresponding view must be

adapted in the other layer as well.

The above issues can be alleviated by using a unified ecosystem (e.g., Apache Spark
27
) to

perform both batch and stream processing using the same code base. So the Speed layer can

be implemented with minimal overhead via the corresponding API, such as Spark Streaming
26
,

which makes use of existing processing code and deployment. On the other hand, if the Batch

and Speed layers use different ecosystems (e.g., Apache Hadoop and Storm
28
respectively), the

processing code can be written by an abstract language (e.g., Summingbird [Boykin et al. 2014])

and automatically compiled for both the layers. However, developers should be able to manipulate

complex programming abstractions. In addition, deployment and maintenance overhead still

remain.

– Merging in the Serving layer involves a certain complexity. The data must be structured in a

way that efficient merging is possible. Thus, designing the database schemes to be compatible

with each other is essential. We can tackle this issue by using the same database (e.g., Apache

Cassandra or Apache HBase) for storing both the real-time and batch views in the Serving layer.

– There is a redundant processing of data (in the Speed layer) for use-cases where low latency is

not continuously needed. [Kroß et al. 2015] tackle this issue by using the Batch layer exclusively,

however, when batch processes are probable to exceed response time limitations, the Speed layer

is switched on.

– Lambda is unable to set up an incremental processing job as it periodically recomputes batch

views from the ground up. This increases the processing latency.

– There is no “tight” integration of the Batch and Speed layers since there is no possibility to

exchange intermediate results (e.g., data mining models) between the layers. However, this is

required for a comprehensive analysis
29
. [Giebler et al. 2018] tackle this issue by intertwining

the Batch and Speed layers through communication channels among the layers.

[Heilig and Voß 2017] combine the philosophy of the Lambda architecture with the cloud platform.

This amalgam can be used for the implementation of BDSs in cloud environments, where BDSs

usually consist of multiple managed cloud services. As illustrated by the diagram in Fig. 3, the static

data are initially stored in a central persistent storage (e.g., HDFS, or a cloud storage). The analysis

26
http://spark.apache.org/streaming/

27
https://spark.apache.org/

28
https://storm.apache.org/

29
In such an analysis, for instance, data mining models produced in the Batch layer are loaded as an initial configuration

into the Speed layer. Furthermore, the data mining models exploited in the Batch layer may be adjusted by real-time

views. This can lead to a maximum business benefit [Gröger et al. 2014].
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Fig. 3. The cloud-based Lambda architecture

Table 4. The applicability of the cloud-based Lambda architecture for the services of major cloud providers

Cloud provider Streaming
service

Streaming
analytics
service

Central
storage
service

Data
warehouse
service

Hadoop
cluster
service

Machine
learning
service

Google Cloud
https://cloud.google.com

Cloud Pub/Sub Cloud Dataflow Cloud Storage BigQuery Cloud
Dataproc VMs

Prediction API

Amazon Web Services (AWS)
https://aws.amazon.com

Kinesis Data
Streams

Kinesis Data
Analytics

S3 Redshift EMR VMs Amazon ML

Microsoft Azure
https://azure.microsoft.com/

Even hub Stream analytics Azure Storage SQL DW HDInsight VMs Azure ML

of such data in a DW requires data processing and loading into the tables of the corresponding

relational databases via ETL jobs performed by a Hadoop cluster. In more details, the Hadoop

cluster processes and transforms semi-structured and unstructured data into structured data to be

processed more in DWs and databases. This is viable through different solutions provided by the

Hadoop ecosystem for the processing and storage of data in NoSQL stores (e.g., HBase), DWs (e.g.,

Hive
30
) and ML (e.g., Mahout

31
) and statistical algorithms.

Note that it is often unreasonable to use a Hadoop cluster for the permanent storage of data as

it incurs enormous expenses. This is due to the need for more virtual machines (VMs) for extra

cluster nodes. Therefore, large cloud consumers (e.g., Netflix [Krishnan and Tse 2013]) demonstrate

the benefit of using low-cost cloud storage services rather than the local storage of HDFS. As such,

by taking into account various data analysis tasks, the same data may be accessed and processed

by multiple clusters for distinct workloads. However, in order to compromise between the low-

latency access to the local storage of HDFS and the low-cost access to the central cloud storage, all

intermediate data of MapReduce jobs are stored in the local storage of HDFS.

On the other hand, the streaming data are sent to a stream processing component to be im-

mediately utilized (e.g., by creating alerts or making suggestions based on ML algorithms). The

streaming data may also be transmitted to the central cloud storage, just if such data are useful for

future processing. This may require ETL jobs to reliably export the data (see, for example, Spotify’s

latest streaming solution using Google Cloud [Maravić 2016]). Table 4 specifies the cloud-based

Lambda architecture for the services provided by the top three cloud providers, Google Cloud,

Amazon Web Service and Microsoft Azure [Gartner 2018].

As a real case study, [Nurminen and Mfula 2018] propose a Lambda-based architecture for 5G

network management software tools. This architecture aims at addressing two main concerns in the

well-known three-tier architecture in current tools: first, inability to handle network management

operations that depend on long term and real-time patterns of data and second, the lack of support

for the strict latency requirements of 5G networks. They extend Lambda by adding a data ingestion

30
https://hive.apache.org/

31
https://mahout.apache.org/
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Table 5. Exemplar use-cases of the Lambda architecture

BDS Domain Data ingestion Batch layer Speed layer Serving layer
AllJoyn Lambda
[2014]

Smart cities IoT-broker MongoDB Apache Storm MongoDB

CiDAP
[2015]

Smart cities IoT-broker Apache Spark
+ HDFS

Apache Samza CouchDB

ELA
[2018]

Building 5G network management software
tools such as cell outage management

Apache Kafka Apache Spark
+ HDFS

Spark Streaming Apache Cassandra

RADStack
[2017]

Interactive analytics Apache Kafka Apache Hadoop Apache Samza Druid

[2018] Disease surveillance N.A. Apache Hadoop Apache Hive
streaming

Apache HBase

[2017] Cardiovascular disease prediction via API calls &
via Map-only jobs

Apache Hadoop Spark Streaming HDFS

[2019] Aviation manufacturing Apache Kafka Apache Hive
+ HDFS

Apache Storm Apache HBase

layer where the Kafka messaging platform
32

is utilized to make a high throughput connection

between heterogeneous data producers and consumers. They use Apache Spark
27
for the batch

layer where Spark SQL API is used for the precalculation of batch views with regard to the long

term expected traffic patterns of network cells. On the other hand, Spark Streaming
26
is used for

the speed layer, whereby the sudden change in traffic patterns is captured from streaming data.

Apache Cassandra, with an in-built support from Apache Spark, is used in the serving layer in order

to persist the batch views. Table 5 depicts some existing BDSs based on the Lambda architecture

and the corresponding technology stacks.

3.2.2 The Kappa architecture. The ability to recompute data streams, the scalability feature of

new message brokers (e.g., Apache Kafka
32
) and the existing powerful stream processors (e.g.,

Apache Samza
33
) resulted in the emergence of the Kappa architecture [Kreps 2014] as an alternative

(not replacement) to Lambda. On the one hand, Kafka is a distributed, high-throughput and fault-

tolerant message broker based on a publisher-subscriber model, where data publishers persist

streaming events in a write-ahead log and data subscribers read data at their own pace. It ingests

data streams as a set of replicated, append-only and immutable sequence of records ordered by

time. Message persistence for a defined period facilitates reprocessing of streams. On the other

hand, Samza
33
is able to cope with data at a far greater rate than it is incoming.

Fig. 2(b) depicts the basic outline of the Kappa architecture. As illustrated, Kappa simplifies

Lambda by performing all computation in a streaming layer alone. The streaming layer supports

both batch and real-time processing by the buffering of historical data in a logging system for long

enough. When recomputation is required, a new stream processing job is launched alongside an

old one. It recomputes the historical data and outputs different results into the Serving layer. After

the new job has caught up the old one, back-end systems read from the new result. In addition, the

old job is terminated and the corresponding output result is deleted.

Note that when the underlying processing logic changes, a new stream processing job (version

n+1) is launched alongside an old one (version n). Therefore, in comparison to the Lambda Architec-

ture, evolving processing and analytics requirements are adapted more flexible; as Kappa needs to

only reflect the changes at the first processing pipeline (job version n). Due to this flexibility, Kappa

can cope with the diversity of analytics scenarios in the domain of consumer-centric Internet of

Things (IoT), such as smart home. In this domain, analytics scenarios are handled on a much smaller

32
https://kafka.apache.org/

33
http://samza.apache.org/

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://kafka.apache.org/
http://samza.apache.org/


Big Data Systems: A Software Engineering Perspective 1:21

Fig. 4. An architecture based on the concepts of Kappa and microservices

Table 6. Exemplar use-cases of the Kappa architecture

BDS Domain Data ingestion Speed layer Serving layer

[2020]
Personal analytics in IoT
environments

Apache Kafka Microservice stream
processing

Time-series databases such
as Graphite or InfluxDB

Cyclic
[2017]

Load forecasting using
event stream processing

Apache Kafka Spark Streaming Redis

scale than prevalent scenarios of Big Data. However, there exist a significant number of different

small scenarios (per consumer) that require Big Data processing capabilities. Hence, instead of

using a heavy full-fledged framework of stream processing, we can exploit a flexible lightweight

microservice-based stream processing
34
. Microservices use stream processing libraries, whereby

each analytics scenario can be performed by a single, lightweight microservice.

Although Kappa provides a single processing path, the effort to recompute the entire history is

linearly increased with the growing volume of data. In addition, Kappa does not fit some data ana-

lytics, such as ML algorithms, where there are different outputs of streaming and batch algorithms.

This means considering the Kappa architecture as an alternative to Lambda in applications whose

requirements allow for processing a sufficiently large segment of current streaming data (instead

of the entire data volume). For example, cell outage compensation in 5G networks requires a long

term pattern matching [Nurminen and Mfula 2018].

As a real case study, [Augenstein et al. 2019; Zschörnig et al. 2020; Zschörnig et al. 2017] propose

an analytics platform architecture based on the concepts of Kappa and microservices, to predict

electricity consumption of households over a period. Smart meters produce consumption data,

while various types of meters are used by various households. Accordingly, data with various

structure and semantics are sent to smart home platform providers which are responsible to predict

the consumers’ energy consumption over a requested time period. A prediction model is created

by feeding data into an ML training process. A growing number of households, with different

consumption profiles, is equal to the need to train and implement different ML models that vary

from one another. Fig. 4 depicts the proposed analytics platform architecture. The speed layer

is implemented using Apache Kafka, whereby data from different IoT data sources are ingested

and distributed within the architecture. In addition, the serving layer is implemented using a

timeseries database named InfluxDB
35
which stores processed data and answers ad-hoc queries on

the data. Table 6 depicts some existing BDSs based on the Kappa architecture and the corresponding

technology stacks.

3.2.3 The Liquid architecture. It avoids the drawback of the Lambda and Kappa architectures

as they are unable to set up an incremental processing job [Fernandez et al. 2015]. Incremental

processing makes data processing faster and more efficient by avoiding recomputation from scratch

(when the input data changes). This requires offering fine-grained data access and handling transient

computation states by the architecture. As such, Liquid annotates incoming streams with metadata,

34
https://www.martinfowler.com/articles/microservices.html

35
https://www.influxdata.com/
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such as timestamps (at which data were read). As illustrated in Fig. 2(c), Liquid includes Processing

and Messaging layers.

The Messaging layer is a distributed, topic-based, publish/subscribe platform which is highly

available and scalable. This is implemented by Apache Kafka
32
whereby input messages are stored

in topics consisting of one or more partitions. Kafka maintains metadata on data and enables

metadata-based access to partitions. Producers can publish messages on topics and consumers can

subscribe on a topic and wait for published messages. It is the responsibility of the Messaging layer

to store both the primary data from sources and the derived data generated by the Processing layer.

The derived data include metadata, such as lineage information about how the data were computed.

The Processing layer is able to access data according to different metadata, such as the timestamp

at which data were read. This allows reading data from particular points in time by the back-end

data systems. As there is an offset manager which allows to checkpoint offsets, it is possible for the

Processing layer to reprocess the last consumed data after failure.

The Processing layer uses a stateful stream processing model to perform jobs for distinct back-end

data systems [Fernandez et al. 2013, 2014]. These jobs perform various transformations in order

to prepare raw input streams for applying more sophisticated querying and storage in the back-

end systems. For example, the available data can be enriched with existing metadata, formatted,

standardized, cleaned, ordered, or merged. This layer is implemented by Apache Samza
33
which

explicitly represents states as part of the computation. In addition, the Processing layer stores

annotated data as metadata in the Messaging layer, enabling jobs to dynamically select input data

streams. Each job executes data processing on messages from an input topic and publishes the

results as messages to an output topic. The job results are named derived data feeds. They can be

source for another processing job or being directly queried by the back-end systems. Each job is

split into some tasks that process a topic’s distinct partitions to provide parallel processing.

However, the scalability of the Processing layer is limited to the Messaging layer. In more details,

the number of partitions of a topic restricts the maximum number of tasks in a job, which in

turn limits the scalability of the jobs. [Mirvakili et al. 2019] tackle this drawback by separating

the Processing layer from the Messaging layer through an intermediate virtual messaging layer.

This layer contains some virtual topics where each one corresponds to a topic in the Messaging

layer. A virtual topic catches messages (about the corresponding topic) from the Messaging layer

and distributes them among the tasks of the jobs which have subscribed to the topic. This makes

independent the number of the tasks in a job from the number of the partitions in the topic on

which the job has subscribed.

3.2.4 The Solid architecture. It aims at integrating heterogeneous data under a single logical

data model, namely RDF [Cuesta et al. 2013; Martínez-Prieto et al. 2015]. Using RDF, in conjunction

with OWL, gives meaning to individual schemas and facilitates their efficient integration. Solid

adapts the Lambda architecture to separate the complexities of real-time data acquisition and

consumption from managing big RDF datasets (i.e., big semantic data). The Data layer follows the

Lambda’s Batch layer principles. It can be viewed as a simple triplestore for storing big immutable

RDF datasets, where raw triples are stored using a compact binary RDF representation, namely

Rdf/Hdt [Fernández et al. 2013]. The Index layer, constructed above the Data layer, provides an

efficient querying of the RDF datasets typically through SPARQL
36
, that is the de-facto standard

for querying RDF. On the other hand, the Online layer follows the Lambda’s Speed layer principles.

This layer captures new RDF streams and temporarily stores them into a runtime triplestore where

a SPARQL interface facilitates communication with the Service layer. The online layer preserves

the efficiency of insertions and SPARQL resolution through storing a small amount of data (as

36
http://www.w3.org/TR/rdf-sparql-query/
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Table 7. Exemplar use-cases of the Bolster architecture

BDS Domain Data ingestion Batch layer Stream
processing

Dispatcher Semantice
layer

Serving layer

BDAL
[2017]

Batch
analytics

FTP,
Apache Sqoop

Apache Spark
+ HDFS

N.R. N.R. Virtuoso SAS

SUPERSEDE
[2017]

Feedback-
driven SDLC

Apache
Kafka

Apache Spark
+ HDFS

Spark
Streaming

Apache
Flume

Virtuoso Apache
HBase

WISCC
[2017]

The Chagas
disease

Data extraction
drivers

MangoDB
+ Quarry [2015]

N.R. N.R. Virtuoso Microsoft
SQL Server

compared to the Data layer). This layer also triggers integrating runtime data into the historical

one in the Data layer. When the quantity of temporary data stored reaches a certain limit, the

Online layer will dump its data to be used as the Merge layer’s input. The Merge layer (which is a

massive-parallel batch process) integrates the earlier historical data with the runtime data at the

Online layer request. After the integration, the dumped data are removed from the Speed layer as

they are available via the Index layer. In spite of Lambda, where every new data piece is duplicated

and maintained in the Serving and Batch layers, every new triple in Solid is only collected by the

Online layer. The integration is similar to Lambda’s recomputation of views. Fig. 2(d) provides the

basic outline of the Solid architecture. However, resource consumption is far less than Lambda as

the single Rdf/Hdt serialization is recomputed by Solid occasionally.

3.2.5 The Bolster architecture. This architecture improves Lambda by adding a new Semantic

layer containing a MetaData Management system (MDM) [Nadal et al. 2017], as shown in Fig. 2(e).

MDM is in charge of providing information needed to deal with data governance and the description

and modeling of raw data. It includes a metadata repository where all the relevant machine-readable

semantic annotations are represented in an RDF ontology. This ontology contains the input data

characteristics such as what attributes they should have and where they come from. An RDF

triplestores (e.g., Virtuoso
37
) can be used to store all the metadata artifacts. Bolster exploits a

Dispatcher component, such as Apache Flume
5
, that is in charge of ensuring stream data routing

and stream data quality. Unlike the Lambda architecture where all input streams are fed to both the

Batch and the Speed layers in parallel, Dispatcher decides where the streaming data are shipped

(to either the Batch or the Speed layer). This decision can be influenced by analyzing the system

workload or evaluating QoS cost models, as performed in [Kroß et al. 2015]. Dispatcher also ensures

if all ingested data follow a schema specified in MDM for the corresponding data sources. Table 7

depicts some existing BDSs based on the Bolster architecture and the corresponding technology

stacks.

3.2.6 The architecture of a polystore. This architecture, whose first implementation is BigDawg

[Duggan et al. 2015; Elmore et al. 2015], is a thorough solution for unified querying over multiple

heterogeneous storage engines with different data and query models. Polystore is based on the “no

one size fits all” observation for data management solutions [Stonebraker and Cetintemel 2005].

It organizes data, that span multiple data models, into information islands. An island represents

a category of storage engines and provides a single data model and query language suitable to

access the corresponding engines. For example, a relational island may be a collection of traditional

relational DBMSs, such as MySQL or Postgres. It is also possible for an individual database engine,

that belongs to multiple categories, to be included in multiple islands. A user can query an island

through the corresponding query language. As such, for each storage engine of an island, there is a

37
http://virtuoso.openlinksw.com
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Table 8. Fulfilment of the requirements in state-of-the-art BDS architectures

SRAs DL-based 1. Volume 2. Velocity 3. Variety 4. Variability 5. Veracity

R1 R2 R3 R1 R2 R1 R2 R3 R1 R2 R3 R1 R2 R3 R4

Lambda [Marz and Warren 2015] Yes ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Kappa [Kreps 2014] No ✗ ✓ ✤ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Liquid [Fernandez et al. 2015] No ✗ ✓ ✤ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Bolster [Nadal 2019; Nadal et al. 2017] Yes ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Solid [Martínez-Prieto et al. 2015] No ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Polystore [Meehan et al. 2016] No ✓ ✓ ✤ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Full support (✓), Limited support (✤), No support (✗)

software module, called shim, whereby the island language is mapped into the native language of

the engine.

Polystore establishes an integration framework based on the aforementioned virtual and mate-
rialized methods. In more details, underlying storage engines are virtually integrated by islands.

Furthermore, a user can request the physical movement of data items (using the CAST operator)

between storage engines. This happens when more than one storage engines are accessed by a

single- or cross-island query. This migration implies transforming the required data from the source

system to a serialized binary format that the target engine can then interpret. In order to handle the

distinctive requirements of streaming data, all streaming systems (e.g., S-Store [Meehan et al. 2015],

Apache Spark Streaming
26
and Storm

28
) are included in a streaming island that is push-based

38

(unlike the other non-streaming islands which are pull-based). This is implemented by a scalable

publish-subscribe messaging module, such as Apache Kafka
32
, which also selects the proper stream

processing system to be fed by the input streaming data. This architecture is comparable to Kappa

and Liquid because a streaming system handles all new input data. However, instead of just tackling

the Volume and Velocity challenges of Big data, it focuses on Variety as well, and the corresponding

serving layer is made up of heterogeneous storage engines.

As an illustration, Fig. 2(f) depicts an example architecture of a polystore. Data are organized in

three information islands: a streaming, a relational and a graph island. The first island contains S-

Store [Meehan et al. 2015], streaming system with its own in-memory data source DS1. It facilitates

streaming ETL by ingesting raw data (in configurable chucks of) steams from multiple sources,

performing various transformations such as data cleaning and storing the data into DS1. Despite

traditional ETL where the intermediate results are written to files, the results in streaming ETL

are pushed into the next element in the ETL pipeline. The transformed streams can then be used

for real-time analytics. They can also be incrementally pushed in batches, via the CAST operator,

into appropriate underlying storage engines for batch analytics. On the other hand, the relational

island contains two relational data sources DS2 and DS3 with their own dedicated shims, whereby

a relational interface is exposed to the island. The third island includes a single graph data source

DS4 whose shim exposes a graph interface to the island. Note that the two latter islands share in

DS3 via two shims; therefore, DS3 can be queried from both the islands.

3.3 Evaluation of BDS Architectures
In the following, we analyze the satisfaction of the architectural requirements shown in Table 3 by

each of the previously mentioned BDS architectures. Table 8 summarized the results of evaluation,

where SRAs and custom architectures are distinguished.

38
It means that new data are automatically fed into the destination engines.
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3.3.1 Requirements on Volume. DL-based architectures (as in Lambda and Bolster) meet all the

requirements on Volume. They offer an scalable storage and processing of stored data (R1.1), where

MapReduce (or similar interfaces) support the analytical capabilities (R1.2 and R1.3). However, the

scalable storage and processing of massive datasets (R1.1) is not met by Kappa and Liquid as no data

are stored. Note that there may also be a bottleneck due to the exchange of data between a message

broker, such as Apache Kafka
32
and the streaming system [Karimov et al. 2018]). This requirement

is not also enforced by Solid. This stems from the processing capabilities of triplestores (even

though there are some efforts [Davoudian 2019; Khadilkar et al. 2012; Shi et al. 2016; Wang et al.

2018; Zeng et al. 2013] on improving these capabilities, the W3C recommendations
39

does not

include any mature scalable solution). With regard to the analytical capabilities, the descriptive

level (R1.2) is satisfied by all the architectures via the stream or batch processing of data (as in

Lambda, Kappa, Liquid, Bolster and Polystore), via SPARQL (as in Solid) or via an abstract language

corresponding to each information island (as in Polystore). In addition, although the complex

predictive/prescriptive level (R1.3) is fully satisfied by the Lambda and Bolster architectures, it is

partially satisfied by Kappa, Liquid and Polystore due to the stream processing of a segment of data

instead of the entire data volume.

3.3.2 Requirements on Velocity. Stream extraction (R2.1) and processing (R2.2) requirements are

met by all architectures.

3.3.3 Requirements on Variety. The ingestion of raw data (R3.1) is met by all the architectures

except Solid, as it ingests only RDF data. On the other hand, schema management (R3.2) is met by

Bolster, Solid and Polystore. In this regard, Bolster virtually integrates data via an OBDA method,

where the LAV paradigm is used for the declarative mappings between the global ontology and the

underlying data sources [Nadal 2019]. In Solid, a unified model (i.e., RDF) of raw data is provided.

Polystore meets this requirement by providing the same data model to access the engines of an

island of information. However, none of the architectures resolve the semantic data interoperability

conflicts (R3.3). Regarding the Big Data integration requirements (R3.2 and R3.3), in order to provide

an efficient data analysis, a BDS should fully exploit metadata in all data management activities,

including information extraction, data cleaning and data integration [Ceravolo et al. 2018]. However,

metadata management is not fully established by the architectures.

3.3.4 Requirements on Variability. Bolster is the only architecture that meets the requirements on

Variability. In this regard, it stores the schema information of ingested elements (R4.1), descriptive

statistics in order to access data evolution (R4.2) and the information of input data sources (R4.3) in

MDM.

3.3.5 Requirements on Veracity. Veracity is satisfied by almost none of the architectures. Data

provenance (R5.1) is only met by Liquid as it supports logging the performed transformation steps

on derived data.

As Table 8 shows, Volume, Velocity and partly Variety (i.e., R3.1) are more fulfilled with respect

to the other ones. In some degree, this is because of the fact that the corresponding requirements

are the main functionalities of Big Data technologies, such as batch and stream processing engines

and NoSQL stores. However, satisfying the other requirements depends on the utilization of data

semantics in data management activities. Traditional relational databases and data warehouses offer

metadata repositories and metadata management as a builtin feature [Poole et al. 2002]. However, a

metadata standard has not yet been developed for the current landscape of Big Data technologies. In

summary, BDS architectures still lack a comprehensive, sound approach to metadata management.

39
https://www.w3.org/2001/sw/wiki/Category:Triple_Store
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On the other hand, regarding the complexity of the aforementioned SRAs, it still remains

challenging to select the most suitable architecture for a specific use case scenario. This selection

requires considering the above architectural requirements. In this respect, [Volk et al. 2019] introduce

a decision maker by developing the well-known Analytical Hierarchy Process (AHP) for multi

criteria decision making [Saaty 1990]. After determining the candidate SRAs, they are contrasted

using SACAM [Stoermer et al. 2003] that is a scenario-based method for the comparison of software

architectures. The comparison results are used afterwards for developing an AHP for SRAs.

4 BDS QUALITY ASSURANCE
Traditional activities and concerns of quality assurance do not take into account the characteristics

of Big Data. This imposes new challenges on quality assurance as elaborated in the following

categories.

– The verification of test results. The data-driven behavior of a ML model (i.e. supervised and

unsupervised learning), where a training algorithm determines the evolving decision logic from

the evolving training data, makes it often impossible to verify the expected test results of a

given input. This, in turn, makes its quality assurance challenging
40
[Amershi et al. 2019]. For

example, the movement of a robot in order to assemble a part of a car can only be verified with

uncertain ML algorithms such as Deep Neural Networks (DNNs) [Tian et al. 2018]. Note that the

formal verification of a ML model does not guarantee its proper usage or implementation by an

application [Otero and Peter 2014].

– Resource-intensive testing environments.The comprehensive testing of a BDS needs aworkload that

is comparable to the one used in the production system. In addition, the repetition and comparison

of tests leads to the storage of different test datasets and the corresponding results. These entail

a testing environment with many processing cores (maybe geographically distributed) similar

to the real system, along with high storage capacity [Madhavji et al. 2015]. However, this may

not be feasible due to the operating costs or efforts to test involved with such environments.

This, in turn, makes it impossible to comprehensively test every aspect of BDSs at scale before

deployment to production. Note that proper functionality and behavior of a BDS at one scale

might not be preserved at bigger scales.

– The generation of an optimal set of realistic test datasets. A sophisticated testing of BDSs requires

providing realistic and application-specific test datasets which cover all characteristics of Big

Data [Alexandrov et al. 2013]. This makes the generation of such datasets a challenging task,

particularly when deciding on an optimal coverage.

– Error-tracing, logging and debugging. The distributed nature of BDSs necessitates testing of such

systems to be in a distributed environment. However, due to the current limitations of distributed

development and debugging tools [Beschastnikh et al. 2016], BDS developers usually have to

use distributed log files. Therefore, understanding BDS behaviors and tracing back the observed

errors to their origins rely on distributed log files which is inherently difficult. This may require

mining of the log files [Gadler et al. 2017; Pettinato et al. 2019; Russo et al. 2015] and eventually

needs to develop methods for sophisticated distributed debugging.

– Verification methods. Due to a combinatorial state explosion, the use of distributed computing to

process Big Data leads to complicated verification methods. Despite a breakthrough in verification

approaches made by partial reduction techniques and symbolic model checking, the verification

capabilities of explicit state models are still better [Camilli 2014].

40
A software system with no reliable test oracle is sometimes referred to as a “non-testable” software [Weyuker 1982].
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– The confusing notion of consistency. With respect to the CAP theorem [Brewer 2000; Fox and

Brewer 1999], the notion of data consistency is weakened in BDSs when trading consistency for

availability. However, these inconsistencies may confuse users and quality technicians since the

latest updates to the data may not be visible in subsequent read requests.

– The assessment of data quality. A prerequisite for Big Data analysis is that the data are of adequate

quality for the context of use. However, for the following main reasons, this is a non-trivial task

[Auer and Felderer 2019; Cai and Zhu 2015; Kläs et al. 2016b]:

• Volume, as the quality assurance of voluminous data with reasonable resources and within

reasonable time is challenging, especially since the data are mostly unstructured and initially

require analysis (e.g, text analysis) or transformation. This can be tackled by the assessment of

a representative sample of the collected data [Kläs et al. 2016a; Motro and Rakov 1998; Taleb

et al. 2016]. However, there is an issue of selecting a reasonable sample size and an appropriate

sampling strategy, especially in large datasets.

• Velocity, as the data of heavy timeliness (e.g., sensor measurements of the environment) require

real-time analysis, otherwise the data become obsolete. Here the challenge is that data quality

assessment may hinder the real-time analysis of data. As another challenge, frequent update

of data might change the corresponding quality. One solution is the complete reassessment of

data quality, which may cause performance problems for voluminous data.

• Variety, as the integration of the data of various types results in far more inconsistencies and

conflicts, which in turn makes data quality assurance more challenging.

The above challenges necessitate applying new approaches for software testing and data quality
assurance whose corresponding state of the research and hot topics are presented in this section.

4.1 Software Testing
The software testing process is concerned with the evaluation of a System Under Test (SUT) and

related development artefacts by checking both the satisfaction of all specified requirements (i.e.,

verification) and meeting all user expectations (i.e., validation) followed by detecting faults (or

defects
41
[Bourque et al. 2014; ISTQB 2018; Young 2008]. By taking BDSs into account, software

testing can be classified with respect to three dimensions: test objective, granularity level and test
execution level, as the following:
– Test objective, whereby there are three categories of software testing: functional testing, non-
-functional testing and data quality testing. Functional testing is intended to identify errors in

SUT’s functionality requirements. For example, testing the generation of right outputs for right

inputs. In contrast, non-functional testing aims at assessing the quality requirements of SUT, such

as reliability, performance, security or safety. Data quality testing is explained in Subsection 4.2.

– Test granularity level, whereby software testing is classified into four categories: algorithm testing,
unit (or component) testing, subsystem (or integration) testing and system testing. (I) Algorithm
testing evaluates ML algorithms, especially the ones used in Deep Learning systems [Jordan and

Mitchell 2015; Pouyanfar et al. 2018] with thousands of parameters and neurons. In more details,

unlike traditional software where developers write the program logic manually, in Deep Learning

systems, program logic is automatically learned from a massive amount of data while human

guidance is minimal. After detecting the erroneous behavior of such systems, such behavior can

be fixed by altering the parameters of the model/structure or adding inputs that induce errors to

41
A fault is usually caused by human errors either in specification, design, or coding phase and results in a failure (or

undesired system behavior).
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the training dataset. (II) Unit (or component) testing evaluates every class in an object-oriented

implementation. (III) Subsystem (or integration) testing checks the integration of components as

a subsystem. (IV) System testing checks the complete system.

– Test execution level, whereby there are three categories of software testing: static testing, dynamic
testing and runtime monitoring to observe the erroneous behaviour of the system.

• Static testing, such as a review or static analysis, which checks software development artefacts

(e.g., requirement, design, or code documents) with no execution.

• Dynamic testing, which executes a test suite
42
to evaluate whether a SUT behaves as expected

or not. After performing a test-case, the SUT’s expected and actual behaviors are compared

with each other. This is performed by a test oracle (or simply an oracle) mechanism and results

in a verdict which can be either pass (conforming behaviors), fail (non-conforming behaviors

due to some failures), or inconclusive (not knowing whether behaviors conform).

However, this comparison is not always feasible, especially in BDSs with ML components,

where it is impossible or too expensive to specify the intended (or correct) output of a given

input. This refers to one of the fundamental software testing issues, called the oracle problem
[Barr et al. 2014; Weyuker 1982] which can be alleviated by a technique called Metamorphic
Testing (MT) [Chen et al. 1998]. This approach is based on an idea saying that reasoning about

relations between the outputs of two or more related inputs is easier than assessing a single

actual output of it. More precisely, in the absence of an ideal oracle to verify each individual

output, MT verifies the functional correctness of software and reveals failures through checking

expected relations (a.k.a. MT-relations) between multiple outputs of the SUT.

Violating a MT-relation reveals a defect in the implementation of the selected algorithm. This

entails constructing MT-relations based on the necessary properties of the algorithm, which

in turn means using MT for the verification as in [Tian et al. 2018]
43
. This violation can also

reveal the algorithm’s deficiency in meeting user’s expectations. This requires constructing

MT-relations based on the user expectations on the algorithm, which in turn means using

MT for the validation as in [Zhou et al. 2015]. Note that MT’s effectiveness depends on the

quality of the MT-relations recognized and the relevant test suites. However, the identification

of proper and effective MT-relations is still challenging and requires deep understanding of

the domain in question, software testing and ML algorithms. The readers are referred to recent

surveys on MT testing [Chen et al. 2018, 2012; Liu et al. 2013; Segura et al. 2016] and generally

on ML testing [Zhang et al. 2020].

• Runtime monitoring, whereby a SUT has to be instrumented for the collection of runtime

data and analyzing the effect [Fagerholm et al. 2014]. This allows evaluating software quality

attributes such as efficiency (e.g., execution time), usability (e.g., user feedback), reliability (e.g.,

frequency of failures) and functionality (e.g., unsatisfying results).

Recent works demonstrate the feasibility of MT to ensure the quality of ML-based BDSs (see

Table 9). Deeptest [Tian et al. 2018] exploits a MT-based method for the verification of DNN-

42
Assuming a test-case as an input selected for the evaluation of SUT, a test suite is a finite set of properly chosen

test-cases from the usually infinite execution domain.

43
As an instance, in a program P that computes the shortest path s between two nodes of an undirected graph, assume for

a given non-trivial graph G and two nodes (x, y) in G, the expected output s(G, x, y) cannot be correctly and precisely

specified. However, we can apply MT by taking into account the following MT-relation: if 𝐺2 is a permutation of
𝐺1 (i.e., 𝐺1 and 𝐺2 are isomorphic) and (𝑥1, 𝑦1) in 𝐺1 correspond to (𝑥2, 𝑦2) in 𝐺2, then s(𝐺1, 𝑥1, 𝑦1) = s(𝐺2, 𝑥2, 𝑦2).
Now suppose the results of two executions (one with input (𝑥1, 𝑦1) and the other with input (𝑥2, 𝑦2) are different.

Therefore, the above relation is violated, which in turn concludes that P is faulty. In addition, we could consider many

more MT-relations such as s(𝐺 , 𝑥 , 𝑦) = s(𝐺 , 𝑦, 𝑥 ) [Chen et al. 2004].
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Table 9. State-of-the-art of research on testing BDSs

Paper Test execution
level

Test objective Test granularity
level

BDS context Contribution

DeepTest
[Tian et al. 2018]

Dynamic via MT Functional Algorithm Autonomous driving Tool

DeepRoad
[Zhang et al. 2018]

Dynamic via MT Functional Algorithm Autonomous driving Tool

[Ding et al. 2017] Dynamic via MT Non-Functional Algorithm Image classification Tool

[Zhou et al. 2015] Dynamic via MT Non-functional Algorithm Search engines Tool

[Auer and Felderer 2018] Runtime Non-functional Algorithm General Method

based software, such as those used to drive autonomous cars
44
. Suppose that the software takes a

road image as input and then outputs the steering angle. Therefore, as a MT-relation, the same

image under any lighting/weather conditions should not significantly change the autonomous

car’s steering angle. Accordingly, DeepTest applies various filters such as rain/fog/blurring and

simple transformations to training driving scenes, and then checks the aforementioned MT-relation.

DeepTest can cheaply and rapidly detect multiple inconsistent and erroneous driving behaviors for

some real-world models of autonomous driving by taking into consideration large quantities of

initial and transformed driving scenes. However, [Zhang et al. 2018] claim that transformed driving

scenes generated by DeepTest are distorted and cannot correctly represent the driving scenes of

the real-world. As such, they develop DeepRoad, which similarly tests DNN-based autonomous

driving systems. However, it synthesizes driving scenes with various weather conditions through a

Generative Adversarial Network (GAN)-based technique [Goodfellow et al. 2014].

[Ding et al. 2017] propose an MT-based method for rigorously validating a ML framework which

classifies biology cell images. This method takes into account the whole framework including a

neural network, a massive image dataset and an execution environment. Accordingly, the authors

construct MT-relations on three distinct levels: (1) system level, where MT-relations are defined

based on the classification accuracy relation of alternative ML algorithms; (2) dataset level, where

MT-relations are defined based on the classification accuracy relation of reorganized training

datasets; and (3) data item level, where MT-relations are defined based on the classification accuracy

relation of reproduced individual images. Similar works in testing ML systems can be found in [Du

et al. 2018; Kim et al. 2019; Pei et al. 2017].

[Zhou et al. 2015] introduce a user-oriented MT for the validation of search engines whose

specifications and algorithms are usually unknown to the users. Despite the conventional MT,

where MT-relations are designed based on the target algorithms, the relations in the user-oriented

MT are defined based on the expectations of users to reflect what is really important to them. In

more details, MT-relations are determined from available online specifications (which are accessible

via the online help pages of search engine), and the set of functionalities offered by search engines

to users, and are related to certain software quality characteristics such as usability and reliability

[ISO/IEC-25010 2010].

The aforementioned challenges of testing BDSs are still relevant to the above related works. In

more details, regarding the verification of test results, future research could explore more reliable

oracles for testing DNN-based systems. For instance, [Stocco et al. 2019a,b] introduce anticipatory

testing as an alternative to MT, where a new type of self-assessment oracles detect future system

failures at runtime
45
. In addition, there is no suitable testing approach focusing on Velocity as a

Big Data characteristic. Instead, the current effort of research community is mostly on Volume

44
https://deeplearningtest.github.io/deepTest/

45
http://www.pre-crime.eu/
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Table 10. A summary of data quality dimensions defined in ISO-25012

Data quality
characteristics

Description Inherent System-
dependent

Accuracy/
Correctness

It refers to the closeness of data values to the corresponding reference values. The accuracy of
some values are simply measured through their known reference values, obtained by specific
business rules such as “a gender value can be Male or Female”. The measurement of others is
usually context-aware and requires extra information. As an example of IoT scenario, a sensed
temperature value is not accurate if it deviates the average of temperature values in the past
two hours by more that 15%.

✓

Timeliness/
Currentness

it refers to the degree to which the collected are temporally valid for the intended analysis. ✓

Completeness It refers to the degree to which the collected data covers the data desired for the analysis. ✓

Consistency It refers to the coherence among a set of data items which are semantically related. For exam-
ple, base on some consistency rules, the consistency of a sensed value of temperature may be
measured regarding the sensed values of humidity and relative pressure.

✓

Credibility The degree to which the data are believable by users. ✓

Accessibility It refers to the easiness of accessing the data by public users and enterprises. ✓ ✓

Compliance The degree to which the data are complied with conventions or standards. ✓ ✓

Confidentiality It refers to providing an authorized access to the data. ✓ ✓

Efficiency The degree to which the data are accessed efficiently. ✓ ✓

Precision In an IoT scenario, it is the degree to which successive sensed values are identical or similar
(i.e., smaller the standard deviation, higher the precision).

✓ ✓

Traceability It refers to providing an audit trail of accesses (and changes made) to the data. ✓ ✓

Understandability The degree to which the data are clear and easy to understand for users. ✓ ✓

Portability It refers to preserving the quality of data after moving the data from one system to another. ✓

Availability The degree to which the data can be retrieved by users. ✓

Recoverability It refer to preserving the quality of data after a system failure. ✓

and Variety of data [Gadler et al. 2017; Pettinato et al. 2019; Russo et al. 2015]. On the other hand,

[Auer and Felderer 2018] reveal a fundamental weakness of existing ML testing solutions as the

data dependent behavior of an ML algorithm results in a limited reasoning about its later quality.

This requires shifting from costly test environment for simulation to available live system where

the algorithm is constantly executed.

4.2 Big Data Assessment forQuality Assurance
Although valuable insights can be extracted via Big Data analysis, the results of such analysis are

barely reliable unless proper quality assurance activities are applied before using the data. Data

quality assurance is a process whereby the quality of data is initially assessed or measured, with

respect to a Data Quality Model (DQM), and then improved through data cleansing activities
46

[Batini et al. 2009; Gao et al. 2016; Gassman et al. 1995]. A DQM is a set of measurable dimensions

or characteristics
47
of data quality [Wang 1998]. In addition, each dimension is quantified by one

or more associated quality metrics or formulas yielding numerical values [Schneidewind 1990].

The standard ISO/IEC 25012
48
is a well-known DQM containing the most desirable data quality

dimensions, categorized as intrinsic and system-dependent (see Table 10). An intrinsic data quality

dimension is inherently fulfilled by the data, with no dependency on computer systems’ capabilities,

whereas a system-dependent one is achieved by a technological domain where the data are used.

46
A comprehensive survey on Big Data cleansing activities is provided in [Mirzaie et al. 2019].

47
Note that there is no general consensus in literature on either all data quality dimensions, or the exact meaning of

each one [Ehrlinger et al. 2019; Myers 2017].

48
https://www.iso.org/standard/35736.html
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Table 11. State-of-the-art of research on data quality assessment in the context of BDSs

Paper Contribution Real-time
assessment

Assessed quality
dimensions

Unstructured
data
assessment

Empirically
validated

[Auer and Felderer 2019] Method No Intrinsic dimensions in
ISO/IEC 25012

No Yes

[Cappiello et al. 2019] Method Yes Accuracy, completeness,
consistency and precision

No Yes

[Cappiello et al. 2018] Method No Accuracy, completeness,
consistency, distinctness,
precision, timeliness and volume

No Yes

[Taleb et al. 2016] Method No Completeness and consistency No Yes

[Kläs et al. 2016a] Method No Dimensions in ISO/IEC 25012 No Yes

[Immonen et al. 2015] Architecture Not relevant Accuracy, completeness and
consistency

Yes Yes

[Merino et al. 2016] Model Not relevant Dimensions in ISO/IEC 25012 Not relevant Yes

[Ehrlinger et al. 2019] A Survey on Tools Not relevant Accuracy, completeness,
consistency and timeliness

Not relevant Yes

Currently, the research on the effective quality assessment of Big Data is in its initial stage [Gao

et al. 2016]. Table 11 depicts the state-of-the-art of research on this context.

Through the existing well-known DQMs for regular data, such as ISO/ETC 25012 and ISO/TS

8000-1
49
, data quality is assessed with no respect to the context of use. Accordingly, [Merino et al.

2016] propose a DQM derived from ISO/ETC 25012, that enables evaluating the quality-in-use of

big datasets regarding the intended analysis. In more details, this 3A model reclassifies the data

quality characteristics of ISO/ETC 25012 into 3 categories of Adequacy: (1) contextual adequacy, as
the fact that the input data is capable of being used within the domain of the intended analysis; (2)

temporal adequacy, as the fact that the age of input data is acceptable for the intended analysis;

and (3) operational adequacy, as the fact that the input data can be fully analyzed via sufficient

and appropriate resources. For each category, they select suitable data quality characteristics (of

ISO/ETC 25012) to assess the quality of Big Data regarding their Volume, Velocity and Variety (see

Table 12).

In a context-aware data quality assessment, the set of quality dimensions and related metrics

are adapted with the context of assessment, determined by data source, data type and intended

analysis. For example, the assessment of accuracy of a value in a batch dataset needs a metric

different from the one in a sensor data stream. In this regard, [Merino et al. 2016] present an

architecture for context-aware data quality assessment. Initially, the user specifies the requirements

such as consistency rules, the granularity level of assessment, required quality dimensions and list

of attributes to be considered in the assessment. Subsequently, a context-aware assessment module

measures the specified dimensions at the requested granularity. However, this architecture does

not cover the assessment of integrated data collected form multiple sources.

In order to reduce the computing costs of data quality evaluation, [Taleb et al. 2016] reduce the

size of big datasets through sampling techniques. This evaluation scheme contains the following

modules: (1) sampling of data via the Bootstrap strategy [Kleiner et al. 2012]; (2) profiling of data

samples via the corresponding metadata and data parsing tools, whereby data characteristics,

such as the description of data formats, various attributes and their related types, values, ranges,

constraints (if any), as well as data generation speed and data quality dimensions are discovered

from data sources; (3) selection of data attributes and quality dimensions; (4) selection of quality

metrics; and (4) evaluation of samples data.

49
https://www.iso.org/standard/50798.html
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Table 12. The assessment of 3As affected by 3Vs

Volume Velocity Variety
Contextual
adequacy

– Completeness
– Consistency
– Confidentiality

– Completeness – Accuracy
– Consistency
– Credibility
– Compliance
– Confidentiality
– Understandability

Temporal
adequacy

– Timeliness – Timeliness
– Accuracy

– Timeliness
– Consistency

Operational
adequacy

– Efficiency – Efficiency
– Confidentiality

– Efficiency
– Confidentiality
– Accessibility

Fig. 5. A SPARQL query to test MT-data-relation I.

[Kläs et al. 2016a] propose similar assessment method based on sampling. This method tackles the

reassessment of frequently updated datasets by only evaluating of the changed part rather than the

entire data. Due to the complex calculation of the changed part, authors assume no update or delete

of existing data. Their assumption is based on the common usage of immutable data stores in BDSs.

[Ehrlinger et al. 2019] evaluate the capabilities of state-of-the-art data quality assessment tools on

measuring accuracy, timeliness, consistency and completeness that are relevant in many studies.

Regarding the investigation results, none of the tools implement a context-aware assessment of

data quality.

As previously mentioned, MT checks the functional correctness of an algorithm without knowing

in advance the corresponding actual output for a given input. This is performed by defining MT-

relations based on the necessary properties of an algorithm, which are input independent. [Auer

and Felderer 2019] extend MT-relations for data quality assessment. In more details, they define the

necessary properties of data based on the corresponding intrinsic quality dimensions, and describe

them with MT-data-relations. However, since MT-relations are based on functions not data, they

express data as some functions by introducing the atr (i.e., attribute) function, that returns the

value of a specified attribute for a given data entity, as follows.

atr(attribute, entity) = entity.attribute
For example, the following MT-data-relation enforces the constraint that the date of birth of a

parent entity (𝑒𝑝 ) has to be before the date of birth of its child entity (𝑒𝑝 ).

atr(‘foaf:birthDate’, 𝑒𝑝) > atr(‘foaf:birthDate’, 𝑒𝑐)
50
(I)

In order to generate the corresponding test cases for the above relation, it is translated into a

SPARQL query shown in Fig. 5. This query returns parent-child pairs which contradict the relation.

In addition, by converting MT-relations into data assertions, the quality of data is monitored and

50
Note that the property names have the ‘foaf:’ prefix which specifies an RDF schema (http://www.foaf-project.org/)

where the properties are defined.
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Table 13. Some open research challenges in developing BDSs

Research aspect Open research challenges
Architecture
design

– BDS architectures lack a comprehensive, sound approach to metadata management.
– It is still challenging to select the most suitable architecture for a specific use case scenario.
– The need for designing a semantics-based BDS reference architecture aiming to support all the architectural re-

quirements (see Table 3).
Software quality
assurance

– How to shift from costly test environments for simulation to available live systems where algorithms are constantly
executed.

– Scaling down the test environment or datasets while maintaining their characteristics.
– The need for more reliable oracles for testing DNN-based systems.
– The need for automatic construction of test oracles.
– There is no suitable testing approach focusing on Velocity as a Big Data characteristic.
– The relatively immature tool support of testing in the context of BDS.

Data quality
assessment

– Existing assessment tools have limitations to implement data quality metrics (e.g., timeliness metrics).
– New data quality characteristics and metrics are required for semi-structured and unstructured data, and the chang-

ing expectations of users.
– Providing a fast context-aware strategy for the quality assessment of streaming data.
– There is no standard quality model for Big Data, addressing quality dimensions and related metrics.
– There is no tool providing a context-aware assessment of data.

users are notified when the quality is degraded [Auer and Felderer 2018]. Accordingly, the authors

demonstrate the applicability of the approach by defining and executing some MT-data-relations

on the dataset of DPpedia
51
as a typical BDS. This is performed by translating MT-data-relations

into SPARQL queries which can be executed on DBpedia dataset via the corresponding public

SPARQL Endpoints
52
.

According to the above related works on Big Data quality assessment, many methods [Auer and

Felderer 2019; Cappiello et al. 2019, 2018; Taleb et al. 2016] only assess the quality of data when

they are collected; however, we believe that it should be handled at all phases of data life cycle,

when data are processed and analyzed. That is why we considered the architectural requirements

on Veracity in Section 3. On the other hand, there is no method for the assessment of unstructured

data (e.g., textual or image data), which is due to the challenging task in analyzing their correlation

and semantics. This motivates using new assessment strategies that focus on the available metadata

rather than assessed data itself. It, in turn, requires a metadata management functionality as

explained in [Immonen et al. 2015; Kläs et al. 2016a]. Furthermore, none of the existing methods

focuses on context-aware strategies for speeding up the online quality assessment of streaming

data.

5 CONCLUSION AND OPEN RESEARCH CHALLENGES
Despite existing a wide range of SE methods to develop robust software systems, engineering of

BDSs is still in its infancy. This survey provides a wide overview of specific challenges that the

development of BDS imposes on software engineers. It also addresses these issues by providing

a comprehensive overview of state-of-the-art research and industry efforts in the engineering

of requirements, designing and constructing software to meet the specified requirements, and

software/data quality assurance in the context of BDSs. Furthermore, we have disclosed some

existing BDS software engineering challenges that have been confronted by BDS developers and

designers. Table 13 summarizes some of these open research challenges. The paper should be

beneficial to increase practitioners’ awareness of prevalent challenges and to offer researchers with

a strong basis for new research directions in software engineering.

51
https://wiki.dbpedia.org/

52
http://dbpedia.org/sparql
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