

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.Doi Number

A Study on Big Data Collecting and Utilizing
Smart Factory Based Grid Networking Big Data
Using Apache Kafka

Sangil Park 1,2, and Jun-Ho Huh 3,4,*, (Member, IEEE)
1 Adjunct Professor of Department of Energy Convergence Security, Catholic University of Pusan, Republic of Korea
2 CEO/Ph.D of MYLINK.inc, Seoul, Republic of Korea
3 Associate Professor (Tenure) of Department of Data Science, National Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan,

Republic of Korea
4 Associate Professor (Tenure) of Interdisciplinary Major of Ocean Renewable Energy Engineering, National Korea Maritime and Ocean University,

Busan, Republic of Korea

* Corresponding author: Jun-Ho Huh: 72networks@kmou.ac.kr

+This work was supported by Research promotion program through the Korea Maritime & Ocean University Research Fund in 2022.

ABSTRACT In the Smart Factory environment of the 4th industrial revolution, much data is generated from

equipment, IoT sensors, and a wide range of manufacturing systems. As manufacturing sites are scattered

around the world, information exchange between geographically remote factories is ever more necessary.

Also, higher quality and effective management can be achieved by integrating and analyzing the collected

and refined data and deriving organic results in the ever-rapidly changing manufacturing environment.

However, as the main factory consists of a separate network with much data generated, it is highly difficult

to gather all data into one and refine it. The most widely used method of data gathering at present has an

architecture where data is linked through integration of the centrally configured solutions for data gathering

and linkage. In other words, legacy systems most commonly used in manufacturing sites such as ERP, MES,

WMS, etc. use the central system called ESB or EAI, to collect data with the SOA method for inter-system

data linkage and collection and pass it on to another legacy system. The centralized method is not suitable

for gathering and converging data generated from dozens or hundreds of different factories that are regionally

dispersed or made up of independent networks and are also extremely vulnerable in terms of security and

safety. This article aims to investigate how to stably and effectively exchange and collect data in

geographically remote, independent networks using Apache Kafka, one of the big data ecosystems, and how

to enable easy analysis of such data so that users can effectively utilize it.

INDEX TERMS Smart Factory, Apache Kafka, ESB, EAI, Data Link, Elastic Search, Zookeeper, Grid Network.

I. INTRODUCTION

The entire world is going through an unprecedented

environment, namely, COVID-19. The non-face-to-face

operations due to COVID-19 have led to increased rates of

teleworking, and social change such as work-life balance

has also led to reduced working hours. Furthermore, as

global companies increase in number, geographical

boundaries are beginning to disappear. Amidst the changes

in working hours and environment, there arose a need for a

method that enables quick and effective work performance.

In order to solve the problems outlined above, companies

have introduced a number of business systems such as ERP,

HR, etc., and the systems have even been distributed due to

globalization.

While manufacturers continue to make further use of

solutions in smart factories and non-face-to-face

environments, information is rather more distributed,

decreasing work efficiency. Efforts are made to solve this

problem and find ways to integrate the information into one

for use and to effectively use diverse systems, and a

demand for a system that accurately and quickly notifies

the tasks at hand, rather than a complex and difficult system,

is higher than ever before. At present, each system

separately notifies the tasks; and only some systems are

equipped with such a function.

If a work notification is necessary, additional

development and cost are incurred for each system, and the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:72networks@kmou.ac.kr

2

function is not a single, integrated function; rather, it is

limited to certain systems.

If a system is distributed for separate management of

information, much information that is not refined is

generated, which makes its utilization difficult. Or, the

resulting unnecessary data makes it difficult for customers

(users) to accurately identify which task to work on, and

how to proceed with it, greatly lowering work efficiency.

Smart Factory manufacturers make use of an in-house

network system for security reasons, and a wide variety of

data are generated in bulk, in real-time. However, there are

limits to big data processing with existing data link systems

only, such as EAI, ESB, etc. In addition, in the

manufacturing industry, there is a great variety of system

types, as well as data types. If each system has to be

modified and developed for data gathering and utilization

for each of these conditions, much cost is expected to be

incurred. A method to refine data, and store it in multiple

databases to enable indexing and AI analysis for quick data

extraction is also necessary, where collected data, not a

simple data linkage, is needed.

Therefore, this paper intends to examine a method to

quickly transmit user-required information, facilitate

system linkage and quickly extract (collect) and utilize the

gathered information by gathering various types of data on

manufacturing systems distributed according to regions

(global, regional smart factory) or purpose, using various

means.

II. BACKGROUND KNOWLEDGE

As for the Big Data collection and analysis method,

Marcin Bajer [1] studied building, searching, and

visualizing a data hub where various types of data including

IoT data are stored, using Elasticsearch, Logstash, and

Kibana (ELK), and Choi, Bomin et al. [2] used NoSQL-

based MapReduce to collect information for effective

firewall log analysis.

In relation to Apache Kafka and Big Data collection,

Bhole Rahul Hiraman et al. [3] examined the stream data

processing of Apache Kafka and how effective Kafka’s

high performance is for big data stream processing, and

Rishika Shree et al. [4] showed that Kafka performs well

and is effective for big data analysis and processing. Bhole

Rahul Hiraman, using the advantage of its scalability,

distribution and capability of high processing through

stable results, checked how Apache Kafka works in big data

stream processing and found that it can process higher

amount than existing messaging systems. Rishika Shree et

al. [4], in Kafka: The Modern Platform for Data

Management and Analysis in Big Data Domain, examined

the performance evaluation and effectiveness of Apache

Kafka, and various ways to bring data between systems and

applications and real-time streaming.

Meanwhile, in Improvement of Apache Kafka Streaming

Using Partition and Multi-Threading in Big Data

Environment, Bunrong Leang et al. [5] used Hadoop and

HBase to handle large data in a manufacturing environment

and used Apache Kafka as a data streaming pipeline. Also,

Apache Spark, with an Apache Kafka interface, enabled

real-time data processing and analysis. Encryption was

performed in a manner that includes a public key and a

private key. Through the aforementioned studies, it has

been proven to increase the performance and accuracy of

data storage, processing, and security in the manufacturing

environment.

With regard to big data collection, Xiaoya Xu et al. [6]

looked into the current status of the collection of industrial

big data generated in the Industry 4.0 environment,

ontology-based modeling, prognosis based on industrial

big data, AI learning of equipment, etc. Le Noac'H et al. [7]

researched how the collection performance can affect the

entire stream processing through performance evaluation of

Apache Kafka, and showed which element has the greatest

impact by measuring various elements. Ajay Bandi et al.

[8] collected big data streaming generated from mobile

devices and IoT devices using the Kafka technology based

on the Kappa architecture and transmitted the tableau in

real time using Rockset to examine a method for

visualization. Data was collected from Twitter at 30-second

intervals, using Twitter API. Ajay Bandi et al. [8] linked

data using Rockset as middleware and used the Kappa

architecture as the prerequisite for streaming data. However,

it differs from this study in that it collected and visualized

data using Apache Kafka based on a single source.

On the other hand, Lavanya et al. [9] integrated

technologies such as Apache Kafka, Spark, Mongo DB, and

LSTM for data collection, in order to effectively forecast

the streaming weather in real-time. Zhang Yang et al. [10]

investigated the data collection technology of the smart grid

and explained the diverse effects of energy through the pre-

processing and analysis of power-related data. Such

communication using power lines is considered as the agent

of this study that views it as one of the methods for data

collection in areas where the Internet is not active if not for

power data, and as the topic for new data collection using

power grid through the improved grid network collection.

Moreover, B. Dhupa et al. [11] researched how to

effectively utilize the Smart Grid through AI comparative

analysis with the smart grid. Ansari et al. [12] also

examined the real-time anomaly detection framework

based on smart meter data collected from the smart grid big

data. As for the architecture of the study, data was collected

through queues using Mongo DB, Cassandra, elastic, and

Hadoop, and for real-time processing and analysis, Spark

was used. In addition, Apache Kafka was utilized for data

linkage between Spark and the big data framework.

Leang et al. [13] looked into the storage and security of

big data transmission using Apache Kafka and Spark in the

manufacturing environment. And Sahal et al. [19]

compared the open source functions including Kafka to

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

collect and stream process big data for prediction

maintenance and repair, and proposed, using cases, the

optimal combination of big data technologies. They differ

by industry, but largely proposed three architectures:

Apache Kafka, Amazon Kines, and RabbitMQ in relation

to data collection queues.

A. APACHE KAFKA

Apache Kafka, an open-source distributed message

processing system developed by the Apache Software

Foundation and a type of MOM (Message Oriented

Middleware) software, asynchronously relays message data

generated in bulk for real-time processing [15]. Apache

Kafka is specialized for real-time processing of large-

capacity messages and is suitable for scaling up the system

as it is designed based on the distributed system [1-2].

Figure 1 shows the architecture of Apache Kafka.

FIGURE 1. The Architecture of Apache Kafka

Apache Kafka, an architecture that stably transmits data

to the target system while buffering the intermediate data

in the event of large-scale transaction data from the source

system that provides data, is capable of both data collection

and transmission, depending on the utilization. Also,

Apache Kafka operates based on the publish-subscribe

model and is made up of producers, consumers, and brokers

[3-4]. Unlike existing message processing systems where

Broker directly pushes messages to the Consumer, in

Apache Kafka, Consumer directly pulls the needed

messages from Broker, resulting in optimal performance.

Apache Kafka guarantees data permanence as it stores

messages in a file format and is advantageous in that it

causes few performance degradations in case of a large

volume of messages, compared to existing message

systems [15].

Meanwhile, Apache Kafka is made up of main elements

such as a broker, topic, provider, consumer, etc. Topic

plays the role of storage for processing of data generation

and consumption in the broker. Broker, meaning a Apache

Kafka server, serves to control the topic and is able to

operate multiple Apache Kafka servers in one cluster.

Provider plays the role of transmitting (publishing) data to

a specific topic of broker and implements it in the

application using the Apache Kafka library. Lastly, the

Consumer plays the role of recipient of data from a specific

topic of broker and implements it in the application using

the Kafka library [5].

B. ZOOKEEPER

Zookeeper is a tool to manage multiple Apache Kafka

servers. It facilitates operations such as synchronization or

master election using API, centralizes the information of

each application (Kafka), and provides such services as

configuration management, group management naming,

synchronization, and others [3]. Using Zookeeper, multiple

Apache Kafka servers can be managed in distributed

network environments rather than a single network, which

helps the intricate configuration of networks. Because the

sub-distributed application (Kafka) fails if Zookeeper fails,

Zookeeper should also be configured as distributed [16].

As shown in Figure 2, Zookeeper configures multiple

servers into a cluster, and distributed applications become

respective clients that provide status and information as

connected to Zookeeper servers. In this paper, Zookeeper

itself was configured as a cluster to manage Zookeeper with

a manager server for Zookeeper.

FIGURE 2. Zookeeper Server Cluster Architecture

C. ELASTICSEARCH

Elasticsearch is an open-source distributed search engine

developed by Shay Banon based on Apache Lucene [17].

Released in 2010 for the first time, it supports distributed

search and analysis for users to search and combine various

types of data such as JSON-based informal data and formal

data, location information, metrics, etc. at their preference.

Capable of quick and near-real-time storage, searching, and

analysis of a large volume of data, it is thus used as a

popular database-type search engine. Elasticsearch can

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

configure a distributed environment in multiple PCs with a

relatively simple setup. As it modifies the original data and

duplicated data according to the data capacity and PC

specifications, it configures a horizontally distributed

environment, providing a more stable operating

environment than a single server. Due to these

characteristics, Elasticsearch is used independently as a

search engine, but often linked with Kibana and Logstash

to configure the Elastic Stack System and utilized as a user

application [18].

FIGURE 3. Configuration of Elasticsearch Cluster

Elasticsearch Cluster is configured as shown in Figure.

3; A node is a physical server that makes up a cluster, and

each shard, as a subset of the index, is made up using

Lucene. It stores real data and indexes and is classified into

the primary shard and replica shard. The primary shard is a

basic index that makes up a shard, and a replica shard is a

replica of a primary shard stored in another distributed node.

It is a document type, and logical category/partition within

an index, similar to a table in DBMS. A document is the

basic unit of data storage managed in Elasticsearch and is

expressed in JSON (JavaScript Object Notation). In

addition, a field is an element that makes up a document

and consists of a name and value. A gateway stores

information such as cluster status and index setup. Since

Elasticsearch is designed to facilitate horizontal scaling, in

a large-capacity environment, a node may be added so that

the cluster recognizes it to scale it up.

D. AES ENCRYPTION

The Advanced Encryption Standard (AES) is a

cryptographic algorithm chosen to replace DES as a data

encryption standard by the National Institute of Standards

and Technology (NIST). Approved by NSA for top-secret

information, this cryptographic algorithm is highly secure.

It is a symmetric-key algorithm, meaning the same key is

used for both encrypting and decrypting the data.

It allows different key and block lengths: 128bit, 192bit,

or 256bit, and shows outstanding performance in speed and

efficiency. The AES has the SPN (Substitution Permutation

Network) structure - it uses the substitution layer and

permutation layer to achieve confusion and diffusion.

While parallel operations can be implemented, a separate

decryption module should be implemented for decryption

[19-20].

III. COLLECTING SMART FACTORY BASED GRID
NETWORKING BIG DATA USING APACHE KAFKA

The prerequisites to gather various types of data (file,

RDBMS, PLC (equipment), DAQ, Web, etc.) distributed

according to regions (global, regional smart factory) or

purpose (ERP, MES, WMS, SCM) using various means

(FTP, REST API, etc.) are as follows: First, it should be

made available to collect data from each data source system

using the pull method without additional modification or

development by taking into consideration various systems.

Second, if collected data is required, data should be refined

and stored in the big data DB such as Redis, Mongo DB,

etc., and support should be provided to enable index

analyzer (Elasticsearch) and AI analysis. Third, data should

be collected, refined, and linked for manufacturing of grids

(mesh-type) that process and transmit the necessary

information to a specific system. Fourth, under the premise

that each network differs by the network area or

environment, it should be possible to collect data in the

applicable network without any loss of data. Fifth, cost

reduction and stable performance should be guaranteed,

and the stability-assured architecture should be configured.

Figure. 4 proposed Architecture for Big Data Collection

to meet the above conditions, an agent that collects data

from a closed internal network, a middleware server that

manages the agent and relays the data transmission and

management, and a management server/monitoring server

that manages Zookeeper, Apache Kafka, and Agent are

required, in addition to the basic Apache Kafka

configuration.

The proposed architecture for big data collection is, as

shown in Figure. 4, configured to collect and transmit data

through the agent at the data source end and to allow

distribution and agent management through the middle

trans server in the middle in charge of agent management

and distribution. The Apache Kafka server was distributed

up to three units or more, and it was set up so that a partition

is automatically generated when a data item is set.

Zookeeper was used to manage Apache Kafka, and a data

refining engine was added that is capable of processing the

Apache Kafka message again. The refined data was

selectively stored in Redis or Mongo DB in a mapped

format, and the key information of the data was stored in

the Maria DB. Also, it was designed to provide data if real-

time analysis is necessary by linking Apache Kafka with

Spark. The manager server acts as a center of the server

collecting grid-type big data, such as Apache Kafka,

Zookeeper, monitoring, agent, middle trans server, DB

storage, data processing, etc. The data collected as such is

stored in various databases according to the method set as

the monitoring tool of the manager server in units of agent

and topic, or if transmitted to an AI analysis program for

data analysis or another legacy system, it may be utilized

for various applications or to search for data stored in the

analysis and index information according to settings.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

FIGURE 4. Proposed Architecture for Big Data Collection

Various tools for Big Data collection such as the agent,

middle trans server, broker, Zookeeper, data filtering

engine (RPA), Spark, etc. can be managed through the

monitoring tool of the manager server, and the monitoring

tool checks the status of the agent, broker, and middle trans

server in real-time, and reports any anomaly to the

administrator.

The consumer that uses the collected data delivers it as

is or processed or analyzed results to systems such as the

web, mobile application, messenger, legacy system, etc.,

according to settings. It also relays services, such as linking

different APIs including Slack, Google Calendar, Okta, etc.

Figure 5 briefly shows the architecture for distributed

data collection. The legacy zone is a separate network

environment where real data is collected and used and is an

individual Smart Factory Plant. The legacy zone has

applications in operation such as WMS, MES, ERP, etc.,

and is configured to collect data generated therefrom and

deliver it to another legacy zone or collect data with the

same purpose generated from multiple legacy zones,

perform statistical analysis with the data and deliver it to

users.

In order to collect data from a closed network with a firewall

as above, the agent should be installed in the network, and the

agent uses node.js.

As for an agent developed with node.js, there is no delay

even when multiple data are simultaneously collected and

delivered from one agent, as it is executed immediately

without waiting for processing to be done once the I/O

operation starts, thanks to the single through and non-blocking

IO, which are the characteristics of node.js. However, because

it should be executed after registering the job through the event,

the agent status and job schedule should be checked from the

middle trans server and manager server to continuously

deliver and execute events.

The agent can collect data by connecting various databases

such as Oracle, Maria, MySQL, etc., transmitting files using

FTP protocol, rest API, web crawler, etc., and data meeting

specific requirements may selectively be collected, such as

new data, changed data, entire data, etc.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

FIGURE 5. Proposed Server Configuration for Big Data Collection

In addition, as the agent that uses node.js is very light

and can be distributed in combination after separating

specific functions for development, large-capacity

functions, such as the rest API function, may be excluded

for distribution, or a specific function may be improved to

configure an agent specialized for the relevant collection

section. As can be seen in Figure 6, node.js is a tool

developed using a simple and light coding scheme based on

javascript and can be distributed in combination after

separate configurations of functions for each file. Also,

when distributed, it is distributed in installable files such as

exe or pkg, eliminating the risk of exposing the configured

source.

FIGURE 6. Program for Agent to Check Zookeeper Status

The agent can collect data by connecting various

databases such as Oracle, Maria, MySQL, etc., transmitting

files using FTP protocol, rest API, web crawler, etc., and

data meeting specific requirements may selectively be

collected, such as new data, changed data, entire data, etc.

The agent’s event was defined as the interface ID as

described in Table 1; the ID was defined in general for job

performance, from the middle trans server, manager server,

monitoring server, and legacy to application, as well as the

agent.

TABLE 1. Sample of the Interface Specification

ID Name From-To

ZAD01 Request DB access list for agent Manager →

Agent

ZAF02 Agent FTP connection settings Manager →

Agent

ZAP01 Agent job profile settings

(schedule)

Manger →

Agent

ZAB07 Prepare a list of agent-managed

batches

Manger →

Agent

ZMF02 Request change of

server.properties file

Monitoring→

Manager

ZRE03 Zookeeper starting performance

result

Agent →

Manger

The agent monitors the status of the system where it is

installed at one-minute intervals, and the information can

be checked in the monitoring tool as shown in Figure 7.

The agent monitors the service or program set up for

management and is capable of executing a restart in the

event of an anomaly in the service or program or agent

failure.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

Through this paper, it was possible to collect, analyze

and manage the data distributed across manufacturers and

systems in an intended format, and even where networks

for each system that are regionally distributed are divided

by the intranet, it was possible to collect the information in

the intranet to the center, enabling integrated analysis of the

data. Furthermore, it was possible to link data through the

central solution for data sharing and collaboration between

organizations and companies and to search and utilize

various heterogeneous system data in an integrated form. In

addition, in practice, analyzing the cause of defects and

tracking the production history in the manufacturing

system were configured through Redis DB and Elastic

Search Index.

For Apache Kafka management, Zookeeper was placed

in higher locations, and in the testing environment, three

Apache Kafka cluster servers were configured under one

Zookeeper. In the real service operating environment, three

zookeepers were located at another cluster network end,

with three Apache Kafka servers under each Zookeeper.

For clear cluster distribution, the network service ends were

separated with one set configured in Naver Cloud Platform

of Korea, another set in AWS, and the other in Azure, and

for further distribution, the server locations were

distributed across Korea, China, etc.

FIGURE 7. Agent Management in the Monitoring Tool

The information in each legacy is extracted through the

connected agent, and the extracted information is delivered

to the manager server (Kafka) through the middle trans

server and message producer. The relevant information is

partitioned through data classification to transmit the user-

required information to the user’s app. Also, according to

the need of the gathered data, it may be stored in an

unstructured database such as Oracle, RDB, Redis, or

Mongo DB.

Zookeeper manages the Apache Kafka broker master,

and there must be one broker master for each Apache Kafka

cluster. Zookeeper also has a master and slave, and if a

failure occurs in the master, the slave acts as an assistant.

For further scaling up in the grid environment, an additional

increase of Zookeeper is also necessary. Zookeeper

controls the broker through the master broker, and if a

failure occurs in the master broker, another broker becomes

the master broker. The broker cluster is an assembly of

brokers, and the broker delivers messages through the topic.

The topic has n number of partitions and n number of

replicas; in general, one partition delivers the message

through one queue. However, if it is designed with a single

partition as above, in the event of a message delay, the

subsequent message is not delivered. As such, three or more

partitions should be set up to contain the message in a queue

through the round-robin method to handle the issue of

message delay.

The agent is installed in every Zookeeper and broker

server, and the monitoring server checks the leader and

follower and the usage of CPU, memory and disk according

to the monitoring cycle. If an anomaly is detected, the

monitoring server automatically sends a notification to the

person in charge and is capable of automatic restart to

prompt response to failure, depending on the settings.

Zookeeper and broker (Kafka) settings are managed with

a config file such as server.properties, and the config file

set up in the monitoring server may be distributed through

the agent or to each Zookeeper or broker to individually or

collectively change the settings.

As shown in Figure 8, the monitoring server can be used to

manage the status and settings for Kafka and Zookeeper.

FIGURE 8. Apache Kafka Cluster Broker Status Management UI

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8

IV. BIG DATA COLLECTION MANAGEMENT
SCENARIOS

In grid network Big Data collection, there are a number

of different scenarios between the agent, manager server,

and DB for various purposes, such as data transmission,

result delivery, failure, anomaly detection, etc. The Apache

Kafka cluster and middle trans server were excluded from

the scenarios, because the Apache Kafka cluster serves as

the basis for the scenarios to be executed, and the middle

trans server is weighted toward the purpose of management,

such as agent management, data relay, etc. Therefore, the

Apache Kafka cluster is included in the configuration of the

manager server, and it is deemed that the middle trans

server is located between the manager server and the agent.

Table 2 shows the communication scenarios for big data

collection and processing, agent, zookeeper, broker

management, and data encryption. As for Zookeeper or

broker, the configure file must be changed, and the module

and all functions restarted to operate with the same settings.

It is highly inconvenient and difficult for users. It is almost

impossible if the user is required to manage a large number

of Zookeepers, brokers, and agents.

In this paper, it was configured with the web UX to store

the set information in the database, and a configure file was

created based on the information to change the settings or

manage operations by transmission to the broker or

Zookeeper. If configured as above, where an issue occurs

in the settings, it is restored based on the settings

information saved immediately before and allows us to

accurately diagnose which setting led to the issue. All

settings information is recorded in the database by revision.

TABLE 2. Data Collection and Management Scenarios

Scenario Case Role description

Case #1 Execute agent

Case #2 Change agent settings

Case #3 Stop and restart agent

Case #4 Execute agent DB query

Case #5 Perform file transmission

Case #6 Zookeeper status

Case #7 #8 Register/modify, delete Zookeeper

Case #9 Control Zookeeper (start, stop)

Case #10 Zookeeper settings and save zoo.cfg

Case #11 Check broker status

Case #12/ #13 Register/modify, delete broker

Case #14 Control broker (start, stop)

Case #15 Change broker settings

(save and change server.properties)

Case #16 Topic list

Case #17 Sync RDBMS table / query

Case #18 Create message encryption and

decryption

Case #19,

#20, #21

Sync keys for message encryption and

decryption

(# 19: Agent), (#20: Monitor)

(#21: Manager)

The scenarios amount to 21 in number, as shown in Table

2. Processes are defined for each scenario as in Figure 9,

and the processes are made up of a communication

interface as in Table 1. The scenarios can be utilized to

manage the entire architecture and transmit, refine, or store

data.

FIGURE 9. Agent Execution Scenarios

To bring the regionally analyzed data of A company

network zone (A zone) to utilize the B company network

zone (B zone), the agent, as shown in Figure 10, brings the

data of the database in A zone. Here, the agent within A

zone must be able to access the database. To link data from

A zone, the agent must be able to communicate with the

middle trans server, and the middleware firewall must be

open to the agent.

The communication port between the agent and

middleware is designed to protect itself from intrusions via

default settings for continuous change. The agent of A zone

collects and transmits the data to the middle trans server by

a signal due to a specific schedule or rest API

communication, the middle trans server transmits the data

to the manager server (Apache Kafka, Zookeeper,

monitoring), and the manager server stores the data in line

with the performance process or transmits it to the agent in

B zone through another middle trans server. The agent in B

zone stores the information in the database or notifies the

information to the legacy system of B zone through rest

API, etc.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

The collected data is not terminated after performing a

single job of data transmission, collection, or refinement,

but, if the performed process is defined, performs data

processing and transmission in the defined order, and

passes the completed result to the next process.

V. RESPONDING TO KAFKA CLUSTER FAILURES

For replicas, it is assumed that one cluster has three

brokers, and if one broker has three partitions, the other two

brokers also have replicas of the same partitions. One of the

replicas is the master (leader), and the remainder are slaves

(followers); if a broker failure occurs, the replica slave

becomes the master. The master broker has the control over

topic failures (master, slave control). If the Apache Kafka

cluster is in a normal condition as shown in Figure 11, it

replicates to each broker for topic A, resulting in duplicate

partitions.

FIGURE 11. Kafka Cluster in Normal Condition

As can be seen in Figure 12, if a failure occurs to a broker

that is not a controller among cluster brokers, the controller

checks the status of other cluster brokers, and the leader

partition of the failed broker is redistributed to another

broker.

Also, as shown in Figure 13, the information of the newly

elected broker with the leader partition is delivered to all

brokers within the cluster. If a failure occurs in the

controller broker, a new controller is elected as set up in

Zookeeper.

FIGURE 12. Broker Failure Occurred

FIGURE 10. Agent Execution Scenarios Data Transmission Process Between Network Zones

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

FIGURE 13. Redistribution of Leader (Master) Partition

One broker out of multiple cluster brokers acts as a

coordinator, and if a failure occurs in the consumer group,

the coordinator checks the status of the consumer group,

and the partition assigned to the failed consumer is

redistributed and assigned to another normally-functioning

consumer within the same consumer group.

VI. DATA SECURITY IN GRID CLUSTERS

The Apache Kafka grid network architecture for big data

collection uses AES encryption. For security, the AES

encryption is used to encrypt and decrypt the key, and the

randomly generated security code is additionally inserted

into the encryption details thereafter. During decryption,

use the key to additionally check the security code even

after decryption.

The architecture has the message structure and code

defined between systems. Thus, if the structure and code do

not match, it detects that the delivered message is deformed

[21].

Encryption and decryption generate random 16-digit

keys and codes, and the manager server generates the key

and distributes it to all agents and manager servers at a

specific cycle. If the manager server, agent, middle trans

server, and monitoring server restart, the manager server

provides the key and code. If the manager server restarts

and there is no key or code managed, a new code is issued.

Generating and managing the encryption keys are

performed on the manager server; the manager server

transmits the key to the agent and monitors the server, as

shown in Figure 14. Between manager servers that are

distributed, the manager server, before generating a key,

requests the key value to another manager server; if there is

no key value, a new key and code are generated.

FIGURE 14. AES Encryption Scenarios

If there remains a key or code due to synchronization

issues, the outdated key or code is destroyed and a new key

or code is transmitted to all remaining agents, manager

servers, and monitor servers. With reference key and code

values existing across all manager servers, where a request

for a key or code is made, the encrypted key or code is

requested.

VII. BIG DATA COLLECTION CLUSTER PERFORMANCE
ASSESSMENT

The Kafka grid network architecture for big data

collection evaluated the server performance and

transmission speed of the agent and manager server by the

number of data transmissions. Since the middle trans server

had only a few servers for performance evaluation, it was

integrated into the manager server for evaluation. The

monitoring server, too, was excluded from performance

evaluation, as it had an insignificant impact on performance

with its function of transmitting simple UI processing

information to the manager server.

The AWS was utilized for the performance evaluation

server, and the detailed specifications are shown in Table 3.

TABLE 3. Specifications of Performance Evaluation Server

Server Spec

Zookeeper & Kafka t4g.2xlarge, 8Coe, 32GB RAM

Manager Server Amazon t4g.2xlarge, 8 Core,

32GB RAM

Monitoring Server Amazon EC2, c6g.2xlarge, 8

Core, 16GB RAM

FTP & RDBMS Amazon t4g.2xlarge, 8 Core,

32GB RAM

Mongo DB Amazon Document DB, r5.large

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

For performance evaluation, a functional integrity

evaluation was first performed; the evaluation was carried

out at an error-free state with a functional integrity

evaluation score of 100%. NMON was used as the tool for

performance evaluation; NMON was installed in every

server for performance analysis. For performance

evaluation, one unit of agent, broker, monitoring, and

manager server were used. As the network section is easily

affected by the section state and external factors, the

transmission speed, load, etc. of the network section were

excluded.

The stress load test result of the agent is shown in Figure

15. It refers to the number of data processing cases

repeatedly performed by the agent upon receiving

performance signals. The average size of data was 10MB,

and data processing of 100 cases means the time taken to

process data with a capacity of 1GB in total.

FIGURE 15. Agent Stress Load Test

The agent server load generated due to data processing

of 100 to 100,000 cases showed the average CPU usage in

Figure 16 (a), free memory capacity in Figure 16 (b), and

I/O processing speed in Figure 16 (c); the CPU was less

than 10%, and the memory and I/O also appeared stable up

to 20,000 cases. There is little difference in performance up

to 200GB data processing, based on the average 10MB data.

In other words, although the transmission time may differ

depending on the network performance, the optimal volume

a single agent can handle on a single occasion is 200GB,

which take 19 minutes to process. Jobs such as described

above seem suitable for batch jobs, and as the capacity of

most real-time data does not exceed 1GB, it may be

processed at a very high speed.

The manager server was evaluated up to the storage of

data received from the agent in the Mongo DB. Since the

Mongo DB is separate, the load due to DB storage was

excluded from this evaluation.

FIGURE 16 (a). Agent Stress Load Test

FIGURE 16 (b). Agent Free Memory Capacity

FIGURE 16 (c). Agent I/O Average Processing Time

FIGURE 16. Performance Evaluation

The stress load of the manager server consistently

increases as shown in Figure 17, which also shows the

increase of processing time between 10,000 and 20,000

cases. As agents processed by a single manager server are

as few as 40 and as many as 400 or even 500, assuming that

the agent simultaneously processes data and that the

manager server processes the distributed load, the data

capable of real-time processing amount to about 20 MB and

500 units. However, as the number of agent servers is

associated with the delay of the network section, we cannot

determine with performance alone.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12

FIGURE 17. Manager Server Stress Load Test

As shown in Figures 18(a), 18(b), and 18(c), the

performance load of the manager server itself does not

significantly deviate from the average usage rate or

capacity. It seems that, when a load occurs in the manager

server, the processing is divided, resulting in an

insignificant impact on the server. For memory, however,

it is advised to secure a sufficient amount of free memory

from the beginning, considering the nature of data

processing; it is also recommended to use a fast I/O

medium for I/O.

FIGURE 18 (a). Manager Server CPU Average Usage Rate

FIGURE 18 (b). Manager Server Free Memory Capacity

FIGURE 18 (c). Manager Server I/O Average Processing Time

FIGURE 18. Performance Load of the Manager Server

VIII. CONCLUSION

The Big Data collection using Apache Kafka enabled the

collection of distributed data through the scalability of the

agent and broker. It was therefore possible to prepare a

foundation for analysis of various data. It also enabled data

collection, as well as data linkage and connected analysis.

With the increasing demand for big data collection and AI

analysis by organizations such as companies, public

agencies, and schools, a need emerged for a system to

collect and manage the data. However, it was a great

challenge to extract data from legacy systems and refine it.

Therefore, this paper utilized Apache Kafka, Agent, Index

Analyzer, Elastic Search, etc. to propose a function to

collect and extract data. The functions proposed in this

article can be utilized by companies and organizations for

diverse purposes including data extraction, and it is

expected that a system compatible with RDMS, big data

DB, etc. will be developed in the future. For the upcoming

research, studies are conducted on the big data network

capable of large-capacity high-speed communication,

which may be used in combination with the global grid Big

Data network.

ACKNOWLEDGMENT: This work was supported by Research

promotion program through the Korea Maritime & Ocean

University Research Fund in 2022.

REFERENCES

[1] Marcin Bajer, “Building an IoT Data Hub with

Elasticsearch, Logstash and Kibana,” 2017 5th

International Conference on Future Internet of Things

and Cloud Workshops (FiCloudW), IEEE, pp. 63-68,

2017.

[2] B. M. Choi, J. H. Kong, S. S. Hong, M. M. Han, “The

Method of Analyzing Firewall Log Data using

MapReduce based on NoSQL,” Journal of the Korea

Institute of Information Security & Cryptology, Vol. 23,

No. 4, pp. 667-677, 2013.

[3] Bhole Rahul Hiraman, Chapte Viresh M, Karve Abhijeet

C, “A Study of Apache Kafka in Big Data Stream

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

Processing,” 2018 International Conference on

Information, Communication, Engineering and

Technology (ICICET), pp. 1-3, 2018.

[4] Rishika Shree, Tanupriya Choudhury, Subhash Chand

Gupta, Praveen Kumar, “KAFKA: The modern platform

for data management and analysis in big data domain,”

2017 2nd International Conference on

Telecommunication and Networks (TEL-NET), pp. 1-5,

2017.

[5] Bunrong Leang, Sokchomrern Ean, Ga-Ae Ryu, Kwan-

Hee Yoo, “Improvement of Kafka Streaming Using

Partition and Multi-Threading in Big Data Environment,”

Sensors, Vol. 19, No. 1, pp.1-18, 2019.

[6] Xiaoya Xu, Qingsong Hua, "Industrial Big Data Analysis

in Smart Factory: Current Status and Research

Strategies", IEEE Access, IEEE, Vol. 5, pp. 17543-

17551, 2017.

[7] Le Noac'H, Paul, Alexandru Costan, Luc Bougé, “A

Performance Evaluation of Apache Kafka in Support of

Big Data Streaming Applications,” 2017 IEEE

International Conference on Big Data, pp. 4803-4806,

IEEE, 2017.

[8] Bandi, Ajay, Julio Ariel Hurtado, “Big Data Streaming

Architecture for Edge Computing Using Kafka and

Rockset,” 2021 5th International Conference on

Computing Methodologies and Communication

(ICCMC), pp. 323-329, IEEE, 2021.

[9] Lavanya, K., Sathyan Venkatanarayanan, Anay Anand

Bhoraskar, “Real-Time Weather Analytics: An End-to-

End Big Data Analytics Service Over Apach Spark With

Kafka and Long Short-Term Memory

Networks,” International Journal of Web Services

Research, IGI global, Vol. 17, No. 4, pp. 15-31, 2020.

[10] Zhang, Yang, Tao Huang, Ettore Francesco Bompard,

“Big Data Analytics in Smart Grids: A Review,” Energy

Informatics, Springer, Vol. 1, No. 1, pp. 1-24, 2018.

[11] Dhupia, Bhawna, M. Usha Rani, Abdalla Alameen, “The

Role of Big Data Analytics in Smart Grid

Management,” Emerging Research in Data Engineering

Systems and Computer Communications, Springer,

pp.402-412, 2020.

[12] Ansari, Mohammad Hasan, Vahid Tabatab Vakili,

Behnam Bahrak, “Evaluation of Big Data Frameworks

for Analysis of Smart Grids,” Journal of Big Data,

Springer, Vol. 6, No. 1, pp. 1-14, 2019.

[13] Leang, B., Ean, S., Ryu, G. A., Yoo, K. H, “Improvement

of Kafka Streaming Using Partition and Multi-Threading

in Big Data Environment,” Sensors, Vol. 19, No. 1, pp.

1-18, 2019.

[14] Sahal, Radhya, John G. Breslin, Muhammad Intizar Ali,

“Big Data and Stream Processing Platforms for Industry

4.0 Requirements Mapping for a Predictive Maintenance

Use Case,” Journal of Manufacturing Systems, Elsevier,

Vol. 54, pp. 138-151, 2020.

[15] Thein, Khin Me Me, “Apache Kafka: Next Generation

Distributed Messaging System,” International Journal of

Scientific Engineering and Technology Research, Vol. 3,

No. 47, pp. 9478-9483, 2014.

[16] Vyas, S., Tyagi, R. K., Jain, C., Sahu, S, “Performance

Evaluation of Apache Kafka–A Modern Platform for

Real Time Data Streaming,” 2022 2nd International

Conference on Innovative Practices in Technology and

Management (ICIPTM), Vol. 2. IEEE, pp. 465-470,

2022.

[17] Zamfir, V. A., Carabas, M., Carabas, C., Tapus, N,

“Systems Monitoring and Big Data Analysis Using the

Elasticsearch System,” 2019 22nd International

Conference on Control Systems and Computer Science,

IEEE, pp. 188-193, 2019.

[18] Elastic Search, Introduction, Basics, Architecture and

Usage of Elastic Search, Available:

https://hassantariqblog.wordpress.com/2016/09/23/elastic-

search-introduction-basics-architecture-and-usage-of-

elastic-search/

[19] Osvik, D. A., Bos, J. W., Stefan, D., Canright, D, “Fast

Software AES Encryption,” International Workshop on

Fast Software Encryption, Springer, pp. 75-93, 2010.

[20] Heron. S, “Advanced Encryption Standard

(AES),” Network Security, Elsevier, Vol. 12, pp. 8-12,

2009.

[21] Giblin, C., Rooney, S., Vetsch, P., Preston, A, “Securing

Kafka with Encryption-at-Rest,” 2021 IEEE

International Conference on Big Data, IEEE, pp. 5378-

5387, 2021.

Authors
 Sangil Park was Received B.E. in

Department of Computer Science

Engineering, Chonnam National

University, in Republic of Korea and

received his bachelor degree Feb 2003.

Also, he was Received M.E. from

Department of Software Engineering,

Korea University at Seoul, Feb 2017.

Also, he received the Ph.D. in

Department of Data Informatics,

Graduate School, (National) Korea Maritime and Ocean

University, Busan, Republic of Korea in Feb. 2023.

He was an Department Manager of Samsung SDS, Samsung,

Republic of Korea, from March 2002 to September 2008.

Also, He was an R&D Site Leader of Next Generation

Manufacturing Development Team, SK C&C, SK, Republic of

Korea, from June 2011 to August 2022.

Since September, 2022, he has been an CEO of MyLink Co.,

Ltd. (Big Data Start-Up Company), Seoul, Republic of Korea.

Also, he is Adjunct Professor of Department of Energy

Convergence Security, Catholic University of Pusan, Republic

of Korea.

He received 2019 Best Project Award (SK I Battery

Charger/Discharger Battery Power Management System), SK

holdings C&C, SK, Republic of Korea.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

14

Jun-Ho Huh (IEEE Member) was

finished the Cooperative Marine

Science and Engineering Program,

Texas A&M University at Galveston,

United States of America in Aug. 2006.

Received B.S. in Science Degree from

Department of Major of Applied Marine

Sciences, And, B.E. in Engineering

Degree (Double Major) from

Department of Computer Engineering

from Jeju National University at Ara, Jeju, Republic of Korea in

Aug. 2007. And he received M.A. degree in education from the

Department of Computer Science Education, Pukyoug National

University at Daeyeon, Busan, Republic of Korea, in Aug. 2012.

Also, he received the Ph.D. in Engineering Degree from

Department of Major of Computer Engineering, Graduate

School, Pukyoug National University at Daeyeon, Busan,

Republic of Korea in Feb. 2016.

He received Best Paper Minister Award (Ministry of Trade,

Industry and Energy, Korean Government) the 16th

International Conference on Control, Automation and Systems

(Oct. 2016), ICROS with IEEE Xplore. Also, he received

Springer Nature Most Cited Paper Award, Human-centric

Computing and Information Sciences most cited paper award

2019 (Research published in the journal between 2016-2018;

SCIE IF=6.558).

He was General/Head Professor of Catholic University of

Pusan on International Game Exhibition G-Star 2017 (G-

Star 2017).

Also, he was the Organizing Chair of the 15th International

Conference on Multimedia Information Technology and

Applications (MITA 2019: University of Economics and Law

(UEL), Vietnam National University Ho Chi Minh City,

Vietnam). Also, He was the Organizing Chair of the 17th

International Conference on Multimedia Information

Technology and Applications (MITA 2021: Jeju KAL Hotel,

ROK).

Currently, he was Managing Editor (ME) at Journal of

Information Processing Systems (JIPS), Korea Information

Processing Society (SCOPUS/ESCI indexed) from Jan. 2020 to

Dec. 2021. Also, he is Managing Editor (ME) at Journal of

Multimedia Information System (JMIS), Korea Multimedia

Society (EI/KCI indexed) from Jan. 2017 to Dec. 2022.

Currently, he is an Associate Editor (AE) at Journal of

Information Processing Systems (JIPS), Korea Information

Processing Society (SCOPUS/ESCI indexed). Also, he is

Associate Editor (AE) at Journal of Multimedia Information

System (JMIS), Korea Multimedia Society (EI/KCI indexed).

Also, he is Associate Editor (AE) at Human-centric Computing

and Information Sciences (HCIS), Springer Berlin Heidelberg

(SCIE IF=6.558).

Since 2017, he has been an Technical Committee (TC) at

IFAC (International Federation of Automatic Control), CC

1 (Systems and Signals), TC 1.5. (Networked Systems). Also,

since 2017, he has been an Technical Committee (TC) at IFAC,

CC 3 (Computers, Cognition and Communication), TC 3.2

(Computational Intelligence in Control). And, since 2017, he

has been an Technical Committee (TC) at IFAC, CC 7

(Transportation and Vehicle Systems), TC 7.2. (Marine

Systems). Also, since 2020, he has been an Technical

Committee (TC) at IFAC, CC 2 (Design Methods), TC 2.6.

(Distributed Parameter Systems).

He was a Research Professor at Dankook University at

Jukjeon, Yongin, Republic of Korea, from July 2016 to

September 2016. Also, he was an Assistant Professor with the

Department of Software, Catholic University of Pusan,

Republic of Korea, from December 2016 to August 2019. Also,

he was an Assistant Professor with the Department of Data

Informatics, (National) Korea Maritime and Ocean University,

Republic of Korea, from Sep., 2019 to Sep., 2021.

Since October 2021, he has been an Associate Professor

(Tenured) with the Department of Data Informatics/Data

Science, (National) Korea Maritime and Ocean University,

Republic of Korea.

Also, since September 2020, he has been an Center Chair

(Director) of Big Data Center for Total Lifecycle of

Shipbuilding and Shipping at (National) Korea Maritime and

Ocean University.

Also, since Sep. 2022, he has been Join Associate Professor

(Tenured) of Global R&E Program for Interdisciplinary

Technologies of Ocean Renewable Energy (BK 21 Four

Research Group) of Interdisciplinary Major of Ocean

Renewable Energy Engineering, (National) Korea Maritime and

Ocean University, Busan, Republic of Korea.

He is the Book Author of “Smart Grid Test Bed Using

OPNET and Power Line Communication” pp.1-425, IGI Global,

USA, 2017. Also, He is the Book Author of “Principles, Policies,

and Applications of Kotlin Programming” pp.1-457, IGI Global,

USA, 2023. And, he has authored/edited 10 books and edited 10

special issues in reputed Clarivate Analytics Index journals.

Also, he has published more than 100 articles in Clarivate

Analytics Index (SCI/SCIE/SSCI indexed) with over 2800

citations and has an h-index of 29.
https://scholar.google.co.kr/citations?user=cr5wjNYAAAAJ&hl=en

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3305586

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://scholar.google.co.kr/citations?user=cr5wjNYAAAAJ&hl=en

