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ABSTRACT In the Smart Factory environment of the 4th industrial revolution, much data is generated from 

equipment, IoT sensors, and a wide range of manufacturing systems. As manufacturing sites are scattered 

around the world, information exchange between geographically remote factories is ever more necessary. 

Also, higher quality and effective management can be achieved by integrating and analyzing the collected 

and refined data and deriving organic results in the ever-rapidly changing manufacturing environment. 

However, as the main factory consists of a separate network with much data generated, it is highly difficult 

to gather all data into one and refine it.  The most widely used method of data gathering at present has an 

architecture where data is linked through integration of the centrally configured solutions for data gathering 

and linkage. In other words, legacy systems most commonly used in manufacturing sites such as ERP, MES, 

WMS, etc. use the central system called ESB or EAI, to collect data with the SOA method for inter-system 

data linkage and collection and pass it on to another legacy system. The centralized method is not suitable 

for gathering and converging data generated from dozens or hundreds of different factories that are regionally 

dispersed or made up of independent networks and are also extremely vulnerable in terms of security and 

safety. This article aims to investigate how to stably and effectively exchange and collect data in 

geographically remote, independent networks using Apache Kafka, one of the big data ecosystems, and how 

to enable easy analysis of such data so that users can effectively utilize it. 

INDEX TERMS Smart Factory, Apache Kafka, ESB, EAI, Data Link, Elastic Search, Zookeeper, Grid Network.

I. INTRODUCTION 

The entire world is going through an unprecedented 

environment, namely, COVID-19. The non-face-to-face 

operations due to COVID-19 have led to increased rates of 

teleworking, and social change such as work-life balance 

has also led to reduced working hours. Furthermore, as 

global companies increase in number, geographical 

boundaries are beginning to disappear. Amidst the changes 

in working hours and environment, there arose a need for a 

method that enables quick and effective work performance. 

In order to solve the problems outlined above, companies 

have introduced a number of business systems such as ERP, 

HR, etc., and the systems have even been distributed due to 

globalization. 

While manufacturers continue to make further use of 

solutions in smart factories and non-face-to-face 

environments, information is rather more distributed, 

decreasing work efficiency. Efforts are made to solve this 

problem and find ways to integrate the information into one 

for use and to effectively use diverse systems, and a 

demand for a system that accurately and quickly notifies 

the tasks at hand, rather than a complex and difficult system, 

is higher than ever before. At present, each system 

separately notifies the tasks; and only some systems are 

equipped with such a function.  

If a work notification is necessary, additional 

development and cost are incurred for each system, and the 
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function is not a single, integrated function; rather, it is 

limited to certain systems.    

If a system is distributed for separate management of 

information, much information that is not refined is 

generated, which makes its utilization difficult. Or, the 

resulting unnecessary data makes it difficult for customers 

(users) to accurately identify which task to work on, and 

how to proceed with it, greatly lowering work efficiency. 

Smart Factory manufacturers make use of an in-house 

network system for security reasons, and a wide variety of 

data are generated in bulk, in real-time. However, there are 

limits to big data processing with existing data link systems 

only, such as EAI, ESB, etc. In addition, in the 

manufacturing industry, there is a great variety of system 

types, as well as data types. If each system has to be 

modified and developed for data gathering and utilization 

for each of these conditions, much cost is expected to be 

incurred. A method to refine data, and store it in multiple 

databases to enable indexing and AI analysis for quick data 

extraction is also necessary, where collected data, not a 

simple data linkage, is needed. 

Therefore, this paper intends to examine a method to 

quickly transmit user-required information, facilitate 

system linkage and quickly extract (collect) and utilize the 

gathered information by gathering various types of data on 

manufacturing systems distributed according to regions 

(global, regional smart factory) or purpose, using various 

means. 

II. BACKGROUND KNOWLEDGE 

As for the Big Data collection and analysis method, 

Marcin Bajer [1] studied building, searching, and 

visualizing a data hub where various types of data including 

IoT data are stored, using Elasticsearch, Logstash, and 

Kibana (ELK), and Choi, Bomin et al. [2] used NoSQL-

based MapReduce to collect information for effective 

firewall log analysis. 

In relation to Apache Kafka and Big Data collection, 

Bhole Rahul Hiraman et al. [3] examined the stream data 

processing of Apache Kafka and how effective Kafka’s 

high performance is for big data stream processing, and 

Rishika Shree et al. [4] showed that Kafka performs well 

and is effective for big data analysis and processing. Bhole 

Rahul Hiraman, using the advantage of its scalability, 

distribution and capability of high processing through 

stable results, checked how Apache Kafka works in big data 

stream processing and found that it can process higher 

amount than existing messaging systems. Rishika Shree et 

al. [4], in Kafka: The Modern Platform for Data 

Management and Analysis in Big Data Domain, examined 

the performance evaluation and effectiveness of Apache 

Kafka, and various ways to bring data between systems and 

applications and real-time streaming. 

Meanwhile, in Improvement of Apache Kafka Streaming 

Using Partition and Multi-Threading in Big Data 

Environment, Bunrong Leang et al. [5] used Hadoop and 

HBase to handle large data in a manufacturing environment 

and used Apache Kafka as a data streaming pipeline. Also, 

Apache Spark, with an Apache Kafka interface, enabled 

real-time data processing and analysis. Encryption was 

performed in a manner that includes a public key and a 

private key. Through the aforementioned studies, it has 

been proven to increase the performance and accuracy of 

data storage, processing, and security in the manufacturing 

environment.  

With regard to big data collection, Xiaoya Xu et al. [6] 

looked into the current status of the collection of industrial 

big data generated in the Industry 4.0 environment, 

ontology-based modeling, prognosis based on industrial 

big data, AI learning of equipment, etc. Le Noac'H et al. [7] 

researched how the collection performance can affect the 

entire stream processing through performance evaluation of 

Apache Kafka, and showed which element has the greatest 

impact by measuring various elements.  Ajay Bandi et al. 

[8] collected big data streaming generated from mobile 

devices and IoT devices using the Kafka technology based 

on the Kappa architecture and transmitted the tableau in 

real time using Rockset to examine a method for 

visualization. Data was collected from Twitter at 30-second 

intervals, using Twitter API. Ajay Bandi et al. [8] linked 

data using Rockset as middleware and used the Kappa 

architecture as the prerequisite for streaming data. However, 

it differs from this study in that it collected and visualized 

data using Apache Kafka based on a single source.  

On the other hand, Lavanya et al. [9] integrated 

technologies such as Apache Kafka, Spark, Mongo DB, and 

LSTM for data collection, in order to effectively forecast 

the streaming weather in real-time. Zhang Yang et al. [10] 

investigated the data collection technology of the smart grid 

and explained the diverse effects of energy through the pre-

processing and analysis of power-related data. Such 

communication using power lines is considered as the agent 

of this study that views it as one of the methods for data 

collection in areas where the Internet is not active if not for 

power data, and as the topic for new data collection using 

power grid through the improved grid network collection. 

Moreover, B. Dhupa et al. [11] researched how to 

effectively utilize the Smart Grid through AI comparative 

analysis with the smart grid. Ansari et al. [12] also 

examined the real-time anomaly detection framework 

based on smart meter data collected from the smart grid big 

data. As for the architecture of the study, data was collected 

through queues using Mongo DB, Cassandra, elastic, and 

Hadoop, and for real-time processing and analysis, Spark 

was used. In addition, Apache Kafka was utilized for data 

linkage between Spark and the big data framework. 

Leang et al. [13] looked into the storage and security of 

big data transmission using Apache Kafka and Spark in the 

manufacturing environment. And Sahal et al. [19] 

compared the open source functions including Kafka to 
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collect and stream process big data for prediction 

maintenance and repair, and proposed, using cases, the 

optimal combination of big data technologies. They differ 

by industry, but largely proposed three architectures: 

Apache Kafka, Amazon Kines, and RabbitMQ in relation 

to data collection queues. 

A. APACHE KAFKA 

Apache Kafka, an open-source distributed message 

processing system developed by the Apache Software 

Foundation and a type of MOM (Message Oriented 

Middleware) software, asynchronously relays message data 

generated in bulk for real-time processing [15]. Apache 

Kafka is specialized for real-time processing of large-

capacity messages and is suitable for scaling up the system 

as it is designed based on the distributed system [1-2]. 

Figure 1 shows the architecture of Apache Kafka. 

 

FIGURE 1. The Architecture of Apache Kafka 

 

Apache Kafka, an architecture that stably transmits data 

to the target system while buffering the intermediate data 

in the event of large-scale transaction data from the source 

system that provides data, is capable of both data collection 

and transmission, depending on the utilization. Also, 

Apache Kafka operates based on the publish-subscribe 

model and is made up of producers, consumers, and brokers 

[3-4]. Unlike existing message processing systems where 

Broker directly pushes messages to the Consumer, in 

Apache Kafka, Consumer directly pulls the needed 

messages from Broker, resulting in optimal performance. 

Apache Kafka guarantees data permanence as it stores 

messages in a file format and is advantageous in that it 

causes few performance degradations in case of a large 

volume of messages, compared to existing message 

systems [15]. 

Meanwhile, Apache Kafka is made up of main elements 

such as a broker, topic, provider, consumer, etc. Topic 

plays the role of storage for processing of data generation 

and consumption in the broker. Broker, meaning a Apache 

Kafka server, serves to control the topic and is able to 

operate multiple Apache Kafka servers in one cluster. 

Provider plays the role of transmitting (publishing) data to 

a specific topic of broker and implements it in the 

application using the Apache Kafka library. Lastly, the 

Consumer plays the role of recipient of data from a specific 

topic of broker and implements it in the application using 

the Kafka library [5]. 

B. ZOOKEEPER 

Zookeeper is a tool to manage multiple Apache Kafka 

servers. It facilitates operations such as synchronization or 

master election using API, centralizes the information of 

each application (Kafka), and provides such services as 

configuration management, group management naming, 

synchronization, and others [3]. Using Zookeeper, multiple 

Apache Kafka servers can be managed in distributed 

network environments rather than a single network, which 

helps the intricate configuration of networks. Because the 

sub-distributed application (Kafka) fails if Zookeeper fails, 

Zookeeper should also be configured as distributed [16]. 

As shown in Figure 2, Zookeeper configures multiple 

servers into a cluster, and distributed applications become 

respective clients that provide status and information as 

connected to Zookeeper servers. In this paper, Zookeeper 

itself was configured as a cluster to manage Zookeeper with 

a manager server for Zookeeper. 

FIGURE 2. Zookeeper Server Cluster Architecture 

C. ELASTICSEARCH 

Elasticsearch is an open-source distributed search engine 

developed by Shay Banon based on Apache Lucene [17]. 

Released in 2010 for the first time, it supports distributed 

search and analysis for users to search and combine various 

types of data such as JSON-based informal data and formal 

data, location information, metrics, etc. at their preference. 

Capable of quick and near-real-time storage, searching, and 

analysis of a large volume of data, it is thus used as a 

popular database-type search engine. Elasticsearch can 
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configure a distributed environment in multiple PCs with a 

relatively simple setup. As it modifies the original data and 

duplicated data according to the data capacity and PC 

specifications, it configures a horizontally distributed 

environment, providing a more stable operating 

environment than a single server. Due to these 

characteristics, Elasticsearch is used independently as a 

search engine, but often linked with Kibana and Logstash 

to configure the Elastic Stack System and utilized as a user 

application [18]. 

FIGURE 3. Configuration of Elasticsearch Cluster 

 

Elasticsearch Cluster is configured as shown in Figure. 

3; A node is a physical server that makes up a cluster, and 

each shard, as a subset of the index, is made up using 

Lucene. It stores real data and indexes and is classified into 

the primary shard and replica shard. The primary shard is a 

basic index that makes up a shard, and a replica shard is a 

replica of a primary shard stored in another distributed node. 

It is a document type, and logical category/partition within 

an index, similar to a table in DBMS. A document is the 

basic unit of data storage managed in Elasticsearch and is 

expressed in JSON (JavaScript Object Notation). In 

addition, a field is an element that makes up a document 

and consists of a name and value. A gateway stores 

information such as cluster status and index setup. Since 

Elasticsearch is designed to facilitate horizontal scaling, in 

a large-capacity environment, a node may be added so that 

the cluster recognizes it to scale it up. 

D. AES ENCRYPTION 

The Advanced Encryption Standard (AES) is a 

cryptographic algorithm chosen to replace DES as a data 

encryption standard by the National Institute of Standards 

and Technology (NIST). Approved by NSA for top-secret 

information, this cryptographic algorithm is highly secure. 

It is a symmetric-key algorithm, meaning the same key is 

used for both encrypting and decrypting the data.  

It allows different key and block lengths: 128bit, 192bit, 

or 256bit, and shows outstanding performance in speed and 

efficiency. The AES has the SPN (Substitution Permutation 

Network) structure - it uses the substitution layer and 

permutation layer to achieve confusion and diffusion. 

While parallel operations can be implemented, a separate 

decryption module should be implemented for decryption 

[19-20]. 

III. COLLECTING SMART FACTORY BASED GRID 
NETWORKING BIG DATA USING APACHE KAFKA 

The prerequisites to gather various types of data (file, 

RDBMS, PLC (equipment), DAQ, Web, etc.) distributed 

according to regions (global, regional smart factory) or 

purpose (ERP, MES, WMS, SCM) using various means 

(FTP, REST API, etc.) are as follows: First, it should be 

made available to collect data from each data source system 

using the pull method without additional modification or 

development by taking into consideration various systems. 

Second, if collected data is required, data should be refined 

and stored in the big data DB such as Redis, Mongo DB, 

etc., and support should be provided to enable index 

analyzer (Elasticsearch) and AI analysis. Third, data should 

be collected, refined, and linked for manufacturing of grids 

(mesh-type) that process and transmit the necessary 

information to a specific system. Fourth, under the premise 

that each network differs by the network area or 

environment, it should be possible to collect data in the 

applicable network without any loss of data. Fifth, cost 

reduction and stable performance should be guaranteed, 

and the stability-assured architecture should be configured.  

Figure. 4 proposed Architecture for Big Data Collection 

to meet the above conditions, an agent that collects data 

from a closed internal network, a middleware server that 

manages the agent and relays the data transmission and 

management, and a management server/monitoring server 

that manages Zookeeper, Apache Kafka, and Agent are 

required, in addition to the basic Apache Kafka 

configuration.  

The proposed architecture for big data collection is, as 

shown in Figure. 4, configured to collect and transmit data 

through the agent at the data source end and to allow 

distribution and agent management through the middle 

trans server in the middle in charge of agent management 

and distribution. The Apache Kafka server was distributed 

up to three units or more, and it was set up so that a partition 

is automatically generated when a data item is set. 

Zookeeper was used to manage Apache Kafka, and a data 

refining engine was added that is capable of processing the 

Apache Kafka message again. The refined data was 

selectively stored in Redis or Mongo DB in a mapped 

format, and the key information of the data was stored in 

the Maria DB. Also, it was designed to provide data if real-

time analysis is necessary by linking Apache Kafka with 

Spark. The manager server acts as a center of the server 

collecting grid-type big data, such as Apache Kafka, 

Zookeeper, monitoring, agent, middle trans server, DB 

storage, data processing, etc. The data collected as such is 

stored in various databases according to the method set as 

the monitoring tool of the manager server in units of agent 

and topic, or if transmitted to an AI analysis program for 

data analysis or another legacy system, it may be utilized 

for various applications or to search for data stored in the 

analysis and index information according to settings. 
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FIGURE 4.  Proposed Architecture for Big Data Collection 

 

Various tools for Big Data collection such as the agent, 

middle trans server, broker, Zookeeper, data filtering 

engine (RPA), Spark, etc. can be managed through the 

monitoring tool of the manager server, and the monitoring 

tool checks the status of the agent, broker, and middle trans 

server in real-time, and reports any anomaly to the 

administrator.  

The consumer that uses the collected data delivers it as 

is or processed or analyzed results to systems such as the 

web, mobile application, messenger, legacy system, etc., 

according to settings. It also relays services, such as linking 

different APIs including Slack, Google Calendar, Okta, etc. 

Figure 5 briefly shows the architecture for distributed 

data collection. The legacy zone is a separate network 

environment where real data is collected and used and is an 

individual Smart Factory Plant. The legacy zone has 

applications in operation such as WMS, MES, ERP, etc., 

and is configured to collect data generated therefrom and 

deliver it to another legacy zone or collect data with the 

same purpose generated from multiple legacy zones, 

perform statistical analysis with the data and deliver it to 

users. 

 

 

 

 

 

 

In order to collect data from a closed network with a firewall 

as above, the agent should be installed in the network, and the 

agent uses node.js.  

As for an agent developed with node.js, there is no delay 

even when multiple data are simultaneously collected and 

delivered from one agent, as it is executed immediately 

without waiting for processing to be done once the I/O 

operation starts, thanks to the single through and non-blocking 

IO, which are the characteristics of node.js. However, because 

it should be executed after registering the job through the event, 

the agent status and job schedule should be checked from the 

middle trans server and manager server to continuously 

deliver and execute events. 

The agent can collect data by connecting various databases 

such as Oracle, Maria, MySQL, etc., transmitting files using 

FTP protocol, rest API, web crawler, etc., and data meeting 

specific requirements may selectively be collected, such as 

new data, changed data, entire data, etc. 
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FIGURE 5. Proposed Server Configuration for Big Data Collection 

 

In addition, as the agent that uses node.js is very light 

and can be distributed in combination after separating 

specific functions for development, large-capacity 

functions, such as the rest API function, may be excluded 

for distribution, or a specific function may be improved to 

configure an agent specialized for the relevant collection 

section. As can be seen in Figure 6, node.js is a tool 

developed using a simple and light coding scheme based on 

javascript and can be distributed in combination after 

separate configurations of functions for each file. Also, 

when distributed, it is distributed in installable files such as 

exe or pkg, eliminating the risk of exposing the configured 

source.  

 

FIGURE 6. Program for Agent to Check Zookeeper Status 

 

 

 

 

 

 

The agent can collect data by connecting various 

databases such as Oracle, Maria, MySQL, etc., transmitting 

files using FTP protocol, rest API, web crawler, etc., and 

data meeting specific requirements may selectively be 

collected, such as new data, changed data, entire data, etc. 

The agent’s event was defined as the interface ID as 

described in Table 1; the ID was defined in general for job 

performance, from the middle trans server, manager server, 

monitoring server, and legacy to application, as well as the 

agent. 

 

TABLE 1. Sample of the Interface Specification 

ID Name From-To 

ZAD01 Request DB access list for agent Manager → 

Agent 

ZAF02 Agent FTP connection settings Manager → 

Agent 

ZAP01 Agent job profile settings 

(schedule) 

Manger → 

Agent 

ZAB07 Prepare a list of agent-managed 

batches 

Manger → 

Agent 

ZMF02 Request change of 

server.properties file 

Monitoring→ 

Manager  

ZRE03 Zookeeper starting performance 

result 

Agent → 

Manger 

 

The agent monitors the status of the system where it is 

installed at one-minute intervals, and the information can 

be checked in the monitoring tool as shown in Figure 7.      

The agent monitors the service or program set up for 

management and is capable of executing a restart in the 

event of an anomaly in the service or program or agent 

failure. 
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Through this paper, it was possible to collect, analyze 

and manage the data distributed across manufacturers and 

systems in an intended format, and even where networks 

for each system that are regionally distributed are divided 

by the intranet, it was possible to collect the information in 

the intranet to the center, enabling integrated analysis of the 

data. Furthermore, it was possible to link data through the 

central solution for data sharing and collaboration between 

organizations and companies and to search and utilize 

various heterogeneous system data in an integrated form. In 

addition, in practice, analyzing the cause of defects and 

tracking the production history in the manufacturing 

system were configured through Redis DB and Elastic 

Search Index. 

For Apache Kafka management, Zookeeper was placed 

in higher locations, and in the testing environment, three 

Apache Kafka cluster servers were configured under one 

Zookeeper. In the real service operating environment, three 

zookeepers were located at another cluster network end, 

with three Apache Kafka servers under each Zookeeper. 

For clear cluster distribution, the network service ends were 

separated with one set configured in Naver Cloud Platform 

of Korea, another set in AWS, and the other in Azure, and 

for further distribution, the server locations were 

distributed across Korea, China, etc. 

FIGURE 7. Agent Management in the Monitoring Tool 

 

The information in each legacy is extracted through the 

connected agent, and the extracted information is delivered 

to the manager server (Kafka) through the middle trans 

server and message producer. The relevant information is 

partitioned through data classification to transmit the user-

required information to the user’s app. Also, according to 

the need of the gathered data, it may be stored in an 

unstructured database such as Oracle, RDB, Redis, or 

Mongo DB. 

Zookeeper manages the Apache Kafka broker master, 

and there must be one broker master for each Apache Kafka 

cluster. Zookeeper also has a master and slave, and if a 

failure occurs in the master, the slave acts as an assistant. 

For further scaling up in the grid environment, an additional 

increase of Zookeeper is also necessary. Zookeeper 

controls the broker through the master broker, and if a 

failure occurs in the master broker, another broker becomes 

the master broker. The broker cluster is an assembly of 

brokers, and the broker delivers messages through the topic. 

The topic has n number of partitions and n number of 

replicas; in general, one partition delivers the message 

through one queue. However, if it is designed with a single 

partition as above, in the event of a message delay, the 

subsequent message is not delivered. As such, three or more 

partitions should be set up to contain the message in a queue 

through the round-robin method to handle the issue of 

message delay. 

The agent is installed in every Zookeeper and broker 

server, and the monitoring server checks the leader and 

follower and the usage of CPU, memory and disk according 

to the monitoring cycle. If an anomaly is detected, the 

monitoring server automatically sends a notification to the 

person in charge and is capable of automatic restart to 

prompt response to failure, depending on the settings. 

Zookeeper and broker (Kafka) settings are managed with 

a config file such as server.properties, and the config file 

set up in the monitoring server may be distributed through 

the agent or to each Zookeeper or broker to individually or 

collectively change the settings. 

As shown in Figure 8, the monitoring server can be used to 

manage the status and settings for Kafka and Zookeeper. 

FIGURE 8. Apache Kafka Cluster Broker Status Management UI 
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IV. BIG DATA COLLECTION MANAGEMENT 
SCENARIOS 

In grid network Big Data collection, there are a number 

of different scenarios between the agent, manager server, 

and DB for various purposes, such as data transmission, 

result delivery, failure, anomaly detection, etc. The Apache 

Kafka cluster and middle trans server were excluded from 

the scenarios, because the Apache Kafka cluster serves as 

the basis for the scenarios to be executed, and the middle 

trans server is weighted toward the purpose of management, 

such as agent management, data relay, etc. Therefore, the 

Apache Kafka cluster is included in the configuration of the 

manager server, and it is deemed that the middle trans 

server is located between the manager server and the agent. 

Table 2 shows the communication scenarios for big data 

collection and processing, agent, zookeeper, broker 

management, and data encryption. As for Zookeeper or 

broker, the configure file must be changed, and the module 

and all functions restarted to operate with the same settings. 

It is highly inconvenient and difficult for users. It is almost 

impossible if the user is required to manage a large number 

of Zookeepers, brokers, and agents.  

In this paper, it was configured with the web UX to store 

the set information in the database, and a configure file was 

created based on the information to change the settings or 

manage operations by transmission to the broker or 

Zookeeper. If configured as above, where an issue occurs 

in the settings, it is restored based on the settings 

information saved immediately before and allows us to 

accurately diagnose which setting led to the issue. All 

settings information is recorded in the database by revision. 

TABLE 2. Data Collection and Management Scenarios 

Scenario Case Role description 

Case #1 Execute agent 

Case #2 Change agent settings 

Case #3 Stop and restart agent 

Case #4 Execute agent DB query 

Case #5 Perform file transmission 

Case #6 Zookeeper status 

Case #7 #8 Register/modify, delete Zookeeper 

Case #9 Control Zookeeper (start, stop) 

Case #10 Zookeeper settings and save zoo.cfg 

Case #11 Check broker status 

Case #12/ #13 Register/modify, delete broker 

Case #14 Control broker (start, stop) 

Case #15 Change broker settings 

(save and change server.properties) 

Case #16 Topic list 

Case #17 Sync RDBMS table / query 

Case #18 Create message encryption and 

decryption 

Case #19,  

#20, #21 

Sync keys for message encryption and 

decryption  

(# 19: Agent), (#20: Monitor) 

(#21: Manager) 

The scenarios amount to 21 in number, as shown in Table 

2. Processes are defined for each scenario as in Figure 9, 

and the processes are made up of a communication 

interface as in Table 1. The scenarios can be utilized to 

manage the entire architecture and transmit, refine, or store 

data. 

 

FIGURE 9. Agent Execution Scenarios 

 

To bring the regionally analyzed data of A company 

network zone (A zone) to utilize the B company network 

zone (B zone), the agent, as shown in Figure 10, brings the 

data of the database in A zone. Here, the agent within A 

zone must be able to access the database. To link data from 

A zone, the agent must be able to communicate with the 

middle trans server, and the middleware firewall must be 

open to the agent. 

The communication port between the agent and 

middleware is designed to protect itself from intrusions via 

default settings for continuous change. The agent of A zone 

collects and transmits the data to the middle trans server by 

a signal due to a specific schedule or rest API 

communication, the middle trans server transmits the data 

to the manager server (Apache Kafka, Zookeeper, 

monitoring), and the manager server stores the data in line 

with the performance process or transmits it to the agent in 

B zone through another middle trans server. The agent in B 

zone stores the information in the database or notifies the 

information to the legacy system of B zone through rest 

API, etc. 
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The collected data is not terminated after performing a 

single job of data transmission, collection, or refinement, 

but, if the performed process is defined, performs data 

processing and transmission in the defined order, and 

passes the completed result to the next process. 

 

V. RESPONDING TO KAFKA CLUSTER FAILURES 

For replicas, it is assumed that one cluster has three 

brokers, and if one broker has three partitions, the other two 

brokers also have replicas of the same partitions. One of the 

replicas is the master (leader), and the remainder are slaves 

(followers); if a broker failure occurs, the replica slave 

becomes the master. The master broker has the control over 

topic failures (master, slave control). If the Apache Kafka 

cluster is in a normal condition as shown in Figure 11, it 

replicates to each broker for topic A, resulting in duplicate 

partitions. 

 

FIGURE 11. Kafka Cluster in Normal Condition 

 

As can be seen in Figure 12, if a failure occurs to a broker 

that is not a controller among cluster brokers, the controller 

checks the status of other cluster brokers, and the leader 

partition of the failed broker is redistributed to another 

broker.  

Also, as shown in Figure 13, the information of the newly 

elected broker with the leader partition is delivered to all 

brokers within the cluster. If a failure occurs in the 

controller broker, a new controller is elected as set up in 

Zookeeper. 

 

FIGURE 12. Broker Failure Occurred 

 

 

 

 

 

 

FIGURE 10. Agent Execution Scenarios Data Transmission Process Between Network Zones 
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FIGURE 13. Redistribution of Leader (Master) Partition 

 

One broker out of multiple cluster brokers acts as a 

coordinator, and if a failure occurs in the consumer group, 

the coordinator checks the status of the consumer group, 

and the partition assigned to the failed consumer is 

redistributed and assigned to another normally-functioning 

consumer within the same consumer group. 

 

VI. DATA SECURITY IN GRID CLUSTERS 

The Apache Kafka grid network architecture for big data 

collection uses AES encryption. For security, the AES 

encryption is used to encrypt and decrypt the key, and the 

randomly generated security code is additionally inserted 

into the encryption details thereafter. During decryption, 

use the key to additionally check the security code even 

after decryption.  

The architecture has the message structure and code 

defined between systems. Thus, if the structure and code do 

not match, it detects that the delivered message is deformed 

[21]. 

Encryption and decryption generate random 16-digit 

keys and codes, and the manager server generates the key 

and distributes it to all agents and manager servers at a 

specific cycle. If the manager server, agent, middle trans 

server, and monitoring server restart, the manager server 

provides the key and code. If the manager server restarts 

and there is no key or code managed, a new code is issued. 

Generating and managing the encryption keys are 

performed on the manager server; the manager server 

transmits the key to the agent and monitors the server, as 

shown in Figure 14. Between manager servers that are 

distributed, the manager server, before generating a key, 

requests the key value to another manager server; if there is 

no key value, a new key and code are generated. 

 

 

 

FIGURE 14. AES Encryption Scenarios 

 

If there remains a key or code due to synchronization 

issues, the outdated key or code is destroyed and a new key 

or code is transmitted to all remaining agents, manager 

servers, and monitor servers. With reference key and code 

values existing across all manager servers, where a request 

for a key or code is made, the encrypted key or code is 

requested. 

 

VII. BIG DATA COLLECTION CLUSTER PERFORMANCE 
ASSESSMENT 

The Kafka grid network architecture for big data 

collection evaluated the server performance and 

transmission speed of the agent and manager server by the 

number of data transmissions. Since the middle trans server 

had only a few servers for performance evaluation, it was 

integrated into the manager server for evaluation. The 

monitoring server, too, was excluded from performance 

evaluation, as it had an insignificant impact on performance 

with its function of transmitting simple UI processing 

information to the manager server. 

The AWS was utilized for the performance evaluation 

server, and the detailed specifications are shown in Table 3. 

TABLE 3. Specifications of Performance Evaluation Server 

Server Spec 

Zookeeper & Kafka t4g.2xlarge, 8Coe, 32GB RAM 

Manager Server Amazon t4g.2xlarge, 8 Core, 

32GB RAM 

Monitoring Server Amazon EC2, c6g.2xlarge, 8 

Core, 16GB RAM 

FTP & RDBMS Amazon t4g.2xlarge, 8 Core, 

32GB RAM 

Mongo DB Amazon Document DB, r5.large 
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For performance evaluation, a functional integrity 

evaluation was first performed; the evaluation was carried 

out at an error-free state with a functional integrity 

evaluation score of 100%. NMON was used as the tool for 

performance evaluation; NMON was installed in every 

server for performance analysis. For performance 

evaluation, one unit of agent, broker, monitoring, and 

manager server were used. As the network section is easily 

affected by the section state and external factors, the 

transmission speed, load, etc. of the network section were 

excluded. 

The stress load test result of the agent is shown in Figure 

15. It refers to the number of data processing cases 

repeatedly performed by the agent upon receiving 

performance signals. The average size of data was 10MB, 

and data processing of 100 cases means the time taken to 

process data with a capacity of 1GB in total. 

 

FIGURE 15. Agent Stress Load Test 

 

The agent server load generated due to data processing 

of 100 to 100,000 cases showed the average CPU usage in 

Figure 16 (a), free memory capacity in Figure 16 (b), and 

I/O processing speed in Figure 16 (c); the CPU was less 

than 10%, and the memory and I/O also appeared stable up 

to 20,000 cases. There is little difference in performance up 

to 200GB data processing, based on the average 10MB data. 

In other words, although the transmission time may differ 

depending on the network performance, the optimal volume 

a single agent can handle on a single occasion is 200GB, 

which take 19 minutes to process. Jobs such as described 

above seem suitable for batch jobs, and as the capacity of 

most real-time data does not exceed 1GB, it may be 

processed at a very high speed. 

The manager server was evaluated up to the storage of 

data received from the agent in the Mongo DB. Since the 

Mongo DB is separate, the load due to DB storage was 

excluded from this evaluation. 

 

 

 

 

 

 

FIGURE 16 (a). Agent Stress Load Test 

 

 

FIGURE 16 (b). Agent Free Memory Capacity 

 

 

FIGURE 16 (c). Agent I/O Average Processing Time 

FIGURE 16. Performance Evaluation 

 

The stress load of the manager server consistently 

increases as shown in Figure 17, which also shows the 

increase of processing time between 10,000 and 20,000 

cases.  As agents processed by a single manager server are 

as few as 40 and as many as 400 or even 500, assuming that 

the agent simultaneously processes data and that the 

manager server processes the distributed load, the data 

capable of real-time processing amount to about 20 MB and 

500 units. However, as the number of agent servers is 

associated with the delay of the network section, we cannot 

determine with performance alone. 
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FIGURE 17. Manager Server Stress Load Test 

 

As shown in Figures 18(a), 18(b), and 18(c), the 

performance load of the manager server itself does not 

significantly deviate from the average usage rate or 

capacity. It seems that, when a load occurs in the manager 

server, the processing is divided, resulting in an 

insignificant impact on the server. For memory, however, 

it is advised to secure a sufficient amount of free memory 

from the beginning, considering the nature of data 

processing; it is also recommended to use a fast I/O 

medium for I/O. 

 

FIGURE 18 (a). Manager Server CPU Average Usage Rate 

 

 

FIGURE 18 (b). Manager Server Free Memory Capacity 

 

 

 

 

 

FIGURE 18 (c). Manager Server I/O Average Processing Time 

FIGURE 18. Performance Load of the Manager Server 

 

VIII. CONCLUSION 

The Big Data collection using Apache Kafka enabled the 

collection of distributed data through the scalability of the 

agent and broker. It was therefore possible to prepare a 

foundation for analysis of various data. It also enabled data 

collection, as well as data linkage and connected analysis. 

With the increasing demand for big data collection and AI 

analysis by organizations such as companies, public 

agencies, and schools, a need emerged for a system to 

collect and manage the data. However, it was a great 

challenge to extract data from legacy systems and refine it.  

Therefore, this paper utilized Apache Kafka, Agent, Index 

Analyzer, Elastic Search, etc. to propose a function to 

collect and extract data. The functions proposed in this 

article can be utilized by companies and organizations for 

diverse purposes including data extraction, and it is 

expected that a system compatible with RDMS, big data 

DB, etc. will be developed in the future. For the upcoming 

research, studies are conducted on the big data network 

capable of large-capacity high-speed communication, 

which may be used in combination with the global grid Big 

Data network. 
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