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Why do we need Knowledge Graphs?
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Knowledge Graphs

Knowledge graphs 
● data structures 
● represent the convergence 

of knowledge and data as 
factual statements 

● use a graph data model
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Spectrum of Knowledge Graphs
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An Example of Knowledge Graphs 

Entities and relationships are first-class 
citizens and representation of 
relationships between entities

Vinorelbine is a chemotherapy drug 
that is used in the treatment of breast 
cancer and non-small cell lung cancer 
(NSCLC).
Cenobamate is an antiepileptic drug 
used to treat partial-onset seizures.
The serum concentration of 
Vinorelbine can be decreased when it 
is combined with Cenobamate.
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Properties of Knowledge Graphs

Natural representation of 
metadata

▪Meaning of entities and 
relationships

Metadata and data can be 
empowered with inference 
processes to deduce new facts
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Knowledge Graphs: Benefits and Challenges

 Knowledge graphs 

● Provide a  formal specification of the 
meaning of entities

○ Metadata: data describing and 
providing information about other data

● Model taxonomies of entities, 
relationships, and classes

● Develop a common understanding of a 
domain

● Natural representation of metadata 
○ Meaning of entities and 

relationships
● Metadata and data can be empowered 

with inference to deduce new facts
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Analysis on top of Knowledge Graphs

Lung Cancer Protocols:

Afatinib  is a second generation Tyrosine Kinase Inhibitors (TKI) not recommended for 
non-small cell  lung cancer patients with Epidermal Growth Factor Receptor (EGFR)  
mutation negative. 

Lapatinib is a dual Tyrosine Kinase Inhibitors (TKI)  for  non-small cell  lung cancer patients 
with HER2 mutation positive or EGFR positive.

ex:patient1 rdf:type ex:NSCLG-EGFR-negative .
ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive .
ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib .

Instances of a knowledge graph:

Is this an error in the data stored in the KG or 
did ex:patient1 receive this treatment?
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Analysis on top of Knowledge Graphs

Survival Analysis of non-small lung cancer patients categorized by tumor 
stage and different oncological treatments in combination with Vinorelbine

Case 1: Vinorelbine 
and Cenobamate may 
interact.

Case 2: Vinorelbine 
and Cisplatin interact, 
but are there further 
studies that report the 
effectiveness of them?

Case 3: Vinorelbine 
and Nivolumab cannot 
be prescribed together. 
This must be an error!

Case 4: Are there further 
studies that support the 
effectivenes of  
Vinorelbine? 

How can support a trustable 
validation of the reported analysis?
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Challenges for tracing data integrated in Knowledge Graphs

04.12.20
20 10

Case 1: Vinorelbine 
and Cenobamate may 
interact.

Human 
readable 
representation.

A data integration system needs to be able to access and integrate 
unstructured data collected from different text data sources
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Challenges for tracing data integrated in Knowledge Graphs

04.12.20
20 11

Case 2: Vinorelbine and 
Cisplatin interact, but are 
there further studies that 
report the effectiveness of 
them?
Case 4: Are there further 
studies that support the 
effectivenes of  
Vinorelbine? 

A data integration system needs to be able to access and integrate 
unstructured data collected from different text data sources
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Challenges for tracing data integrated in Knowledge Graphs

04.12.20
20 12

Case 3: Vinorelbine and 
Nivolumab cannot be prescribed 
together. This must be an error!

Data transparency requires tracking down all the steps of the data-driven pipeline
• accounting for the decisions made by each component of the pipeline
• describing of raw data and quality issues present in the raw data sets
• validating of clinical data to verify if there are patients that take Vinorelbine and Nivolumab together
• certifying that data protection regulations are respected in all the steps!
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Knowledge Graphs: Benefits and Challenges

 Knowledge graphs 

● Provide a  formal specification of the 
meaning of entities

○ Metadata: data describing and 
providing information about other data

● Model taxonomies of entities, 
relationships, and classes

● Develop a common understanding of a 
domain

● Natural representation of metadata 
○ Meaning of entities and 

relationships
● Metadata and data can be empowered 

with inference to deduce new facts

  Data Integration
● Natural Language and Image Processing for 

recognizing relevant entities 
● Techniques for entity linking and alignment
● Data quality assessment and curation

  Knowledge Representation
● Expressive formalism and reasoning 

mechanisms 
● Methods for  integrity constraint validation

 Knowledge Discovery 
● Methods able to discover patterns in 

knowledge graphs
 Predictive Models

● Capable to exploit the semantics encoded in 
knowledge graphs towards explainable AI 

Computationally Expensive in Time and Space



  

1. Data Integration Systems, Data Ecosystems, and 
Knowledge Graphs

2. Declarative Mapping Languages

3. Evaluation of Pipelines for Knowledge Graph 
Creation 

4. Integrity Constraint Validation

5. Pipelines for KG Creation

6. Future Directions

Agenda



  

Data Integration Systems, Data 
Ecosystems, and Knowledge 
Graphs
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3646
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Data, Knowledge and Interoperability [Wiederhold’92]
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Mediator and Wrapper Architecture [Wiederhold’92]
  

Wrappers:
● provide access to heterogeneous data sources. For 

each data
● export information about source schema, data, and 

query processing capabilities.
Mediators: 

● store the information provided by wrappers in a 
unified view of all available data with a central data 
dictionary

● decompose input queries into sub-queries that can 
be executed by wrappers

● gather results from wrappers and create answers to 
the user query

Mediator
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3646 3569



Page 20https://www.google.de/books/edition/Principles_of_Data_Integration/5Rg679tjhFQC?hl=en&gbpv=1

2012
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Data Integration Systems[Lenzerini2002]

 DIS=<O,S,M>

 Let O be a set of general concepts in a general schema or ontology.

 Let S={S1,..,Sn} be a set of symbols representing data sources.

 Let M be a set of mappings between data sources in S and general concepts in O.
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   Global-as-View (GAV):
▪ Concepts in the Global Schema (O) are defined in terms of combinations of 

Sources (S).

   Local-As-View (LAV):
▪ Sources in S are defined in terms of combinations of Concepts in O.

   Global- & Local-As-View (GLAV):
▪ Combinations of concepts in the Global Schema (O) are defined in 

combinations of Sources (S).

Data Integration Systems- Paradigms [Lenzerini2002]
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Data Integration Systems

Data Integration 
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration 
System

Data Integration 
System

Wrapper Wrapper Wrapper

Data Integration 
System



Page 24

Knowledge Graphs

A Knowledge Graph is a graph KG=(O,V,E):
● O is a unified schema
● V is a set of entities representing data, information, or knowledge. 

Types of the entities in V are defined in O
● E is a set of edges between entities in V. Edges are labeled with 

predicates in O. The semantics of these predicates is also stated in O.

Materialized Data 
Integration System

Vidal M.E., et al. Transforming Heterogeneous Data into Knowledge for Personalized Treatments - A Use Case. Datenbank-Spektrum 19(2):(2019)
Geisler S., Vidal M-E, et al. Knowledge-driven Data Ecosystems Towards Transparency. ACM Journal Data and Information Quality. 2021 
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Virtual Data Integration Systems

● Mapping rules in M are used to rewrite a 
query Q over unified schema O into a 
query Q’ in the data sources in S

● Query planning is performed to optimized 
Q’ and generate a query plan QP on the 
data sources 

● Query execution engine evaluates QP in 
the selected data sources 

● Query answers are used to create a 
portion of the Knowledge Graph

Portion of Knowledge 
Graph (KG)
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Virtual Data Integration Systems
Ontop (Calvanese et al.)
https://ontop-vkg.org/

● Creates a virtual RDF KG during the evaluation of SPARQL against relational 
databases. 

● Mapping rules are specified in R2RML
● Ontology specified in RDFS or OWL QL

Ultrawrap (Sequeda and Miranker)
https://www.cs.utexas.edu/~miranker/s
tudentWeb/UltrawrapHomePage2.html

● The unified schema O is created from the SQL DDL of a relational database
● The relational tables are represented as triples using views (virtual triple store)
● Transform every SPARQL query against the O into SQL on the virtual triple views

Morph (Priyatna et al.)
https://github.com/fpriyatna/morph

● Creates RDF KGs from relational data sources based on a SPARQL query and 
R2RML mapping rules 

● Employs query execution techniques to generate efficient SQL queries against 
the relational databases 

Ontario (Endris et al.)
https://github.com/SDM-TIB/Ontario

● Executes SPARQL queries against data sources in various formats
○ XML, relational databases, JSON 

● Implements query execution techniques to generate efficient query plans 

Morph-CSV (Chaves et al.) ● Enhances the process SPARQL-SQL over tabular data (defined as CSV files) 
with domain-specific constraints 

● Implements query execution techniques to generate efficient query plans 
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Materialized Data Integration Systems

● Data sources are integrated as 
instances of the unified schema O

● Mapping rules in M are executed to 
generate the unified schema O 
instances

● Controlled vocabularies are utilized for 
data annotation as basis for entity 
alignment 

● Usually implemented by 
Extraction-Transform-Load (ETL) tools

Knowledge Graph 
(KG)
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Materialzed Data Integration Systems

RMLMapper (Dimou et al. 
2016)
https://github.com/RMLio/r
mlmapper-java

● In-memory engine. RML compliant engine to create RDF graphs from data sources in 
various formats

○ local formats: CSV, JSON.XML, Excel file, LibreOffice
○ remote access: SPARQL endpoints, Web APIs, relational databases 

● Provides drivers to access multiple types of data sources 
○ Oracle,, MySQL,PostgreSQL, SQLServer,  and WebAPIs 

SDM-RDFizer (Iglesias et at. 
2020)
https://github.com/SDM-TIB
/SDM-RDFizer

● RML compliant engine able to transform data into RDF
○ local formats: CSV, JSON.XML
○ remote access: relational databases 

● Implement data structures and physical operators to efficiently  execute RML mapping rules
● Produces results incrementally 
● Able to trace down the execution of RML mapping rules

Morph-KGC 
(Arenas-Guerrero et al.)
https://github.com/oeg-upm
/morph-kgc

● RML compliant engine able to transform data into RDF
○ local formats: CSV, JSON.XML
○ remote access: relational databases 

● Implement planning techniques for planning mappings 
○ based on mapping partitioning 
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Materialzed Data Integration Systems

Rocket-RML (Şimşek et al.)
https://semantifyit.github.io/
RocketRML/

● RML compliant engine
○ XML, JSON, CSV

● Tuned to work with large XML or JSON files

SPARQL-Generate (Lefrançois 
et al.)
https://ci.mines-stetienne.fr/
sparql-generate/

● Extends SPARQL 1.1 binding function mechanism to 
○ query and iterate over data streams in various formats 

■ RDF, SQL,  XML, JSON, CSV, GeoJSON, WebSocket streams, Web APis
○ transform the collected data using SPARQL 1.1 functions and operators
○ populate instances in an RDF based on Graph-pattern templates

Chimera (Scrocca et al.)
https://github.com/cefriel/chi
mera

● Generic pipeline for RDF graph creation and configurable for RML 
● Implements optimization techniques for managing large JSON and XML files
● Plans the execution of  mapping rules to reduce memory consumption 
● Generates RDF triples  incrementally and upload them in a triple store 
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A Knowledge-driven Data Ecosystem

Data Operators: are functions used for accessing or managing 
data in the data sets. 
 Domain ontologies: provide unified views of the concepts, 
relationships, and constraints of the domain of knowledge.
Properties: enable the definition of data quality, provenance, and 
data access regulations of the data.
Descriptions:  characteristics of data sources using standards and 
controlled vocabularies
Mappings: correspondences among the different components. 
Regulations: for data access and data privacy preservation. 
Strategies & Business Models: to define stakeholders and roles.  Services able to exploit knowledge encoded in the 
metadata to support transparency and traceability
• Question answering, query processing, data integration, 
entity and predicate linking, and data quality validation 

Geisler S., Vidal M-E, et al. Knowledge-driven Data Ecosystems Towards Transparency. ACM Journal Data and Information Quality. 2022

Data Ecosystems: distributed, open, and adaptive 
information systems with the characteristics of being 
self-organized, scalable, and sustainable.
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Network of  Knowledge-driven Data Ecosystems

Geisler S., Vidal M-E, et al. Knowledge-driven Data Ecosystems Towards Transparency. ACM Journal Data and Information Quality. 2022 



  

Declarative Mapping Languages



Page 33

Declarative Mapping Languages

RDF 
triple-centric

Mapping 
Language 

RDF 
graph-pattern 
centric

GRDDL (W3C Rec 2007)

SPARQL-Generate

CSVW (W3C Rec 2015)

R2RML (W3C Rec 2012)

RML    (R2RML Extension Dimou et al 2013) 
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Graph-Pattern Centric Mapping Languages

The language enables the definition of mapping rules 
● gather data from various data sources and transform the collected 

data into instances of a graph pattern
SPARQL-Generate: implementable on top of existing SPARQL engines

Heterogeneous Data Sources

Mapping Rule
Graph 
Pattern 

https://www.slideshare.net/maximelefrancois86/overview-of-the-sparqlgenerate-language-and-latest-developments



Page 35

SPARQL-Generate - Graph-Pattern Centric 
Mapping Language

{“DrugDescription”:
[ {“DrugName”: “Vinorelbine”,
   “Bioavailability”: “43.000000”,
   “casNumber”: “71486-22-1”,
   “drugbankID”: “DB00361”},

  {“DrugName”: “Cisplatine”,
   “Bioavailability”: “100.000000”,
   “casNumber”: “15663-27-1”,
   “drugbankID”: “DB00515”},

  {“DrugName”: “Omeprazole”,
   “Bioavailability”: “35.000000”,
   “casNumber”: “73590-58-6”,
   “drugbankID”: “DB00338”},
]
}

Mapping Rule
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SPARQL-Generate - Generate Query

{“DrugDescription”:
[ {“DrugName”: “Vinorelbine”,
   “Bioavailability”: “43.000000”,
   “casNumber”: “71486-22-1”,
   “drugbankID”: “DB00361”},

  {“DrugName”: “Cisplatine”,
   “Bioavailability”: “100.000000”,
   “casNumber”: “15663-27-1”,
   “drugbankID”: “DB00515”},

  {“DrugName”: “Omeprazole”,
   “Bioavailability”: “35.000000”,
   “casNumber”: “73590-58-6”,
   “drugbankID”: “DB00338”},
]
}
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SPARQL-Generate - Graph-Pattern Template

{“DrugDescription”:
[ {“DrugName”: “Vinorelbine”,
   “Bioavailability”: “43.000000”,
   “casNumber”: “71486-22-1”,
   “drugbankID”: “DB00361”},

  {“DrugName”: “Cisplatine”,
   “Bioavailability”: “100.000000”,
   “casNumber”: “15663-27-1”,
   “drugbankID”: “DB00515”},

  {“DrugName”: “Omeprazole”,
   “Bioavailability”: “35.000000”,
   “casNumber”: “73590-58-6”,
   “drugbankID”: “DB00338”},
]
}
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SPARQL-Generate - Data Source

{“DrugDescription”:
[ {“DrugName”: “Vinorelbine”,
   “Bioavailability”: “43.000000”,
   “casNumber”: “71486-22-1”,
   “drugbankID”: “DB00361”},

  {“DrugName”: “Cisplatine”,
   “Bioavailability”: “100.000000”,
   “casNumber”: “15663-27-1”,
   “drugbankID”: “DB00515”},

  {“DrugName”: “Omeprazole”,
   “Bioavailability”: “35.000000”,
   “casNumber”: “73590-58-6”,
   “drugbankID”: “DB00338”},
]
}
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SPARQL-Generate - Iterator for source traversal 

{“DrugDescription”:
[ {“DrugName”: “Vinorelbine”,
   “Bioavailability”: “43.000000”,
   “casNumber”: “71486-22-1”,
   “drugbankID”: “DB00361”},

  {“DrugName”: “Cisplatine”,
   “Bioavailability”: “100.000000”,
   “casNumber”: “15663-27-1”,
   “drugbankID”: “DB00515”},

  {“DrugName”: “Omeprazole”,
   “Bioavailability”: “35.000000”,
   “casNumber”: “73590-58-6”,
   “drugbankID”: “DB00338”},
]
}
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SPARQL-Generate - Binding functions

{“DrugDescription”:
[ {“DrugName”: “Vinorelbine”,
   “Bioavailability”: “43.000000”,
   “casNumber”: “71486-22-1”,
   “drugbankID”: “DB00361”},

  {“DrugName”: “Cisplatine”,
   “Bioavailability”: “100.000000”,
   “casNumber”: “15663-27-1”,
   “drugbankID”: “DB00515”},

  {“DrugName”: “Omeprazole”,
   “Bioavailability”: “35.000000”,
   “casNumber”: “73590-58-6”,
   “drugbankID”: “DB00338”},
]
}
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RDF Triple Centric Mapping Language

{“DrugDescription”:
[ {“DrugName”: “Vinorelbine”,
   “Bioavailability”: “43.000000”,
   “casNumber”: “71486-22-1”,
   “drugbankID”: “DB00361”},

  {“DrugName”: “Cisplatine”,
   “Bioavailability”: “100.000000”,
   “casNumber”: “15663-27-1”,
   “drugbankID”: “DB00515”},

  {“DrugName”: “Omeprazole”,
   “Bioavailability”: “35.000000”,
   “casNumber”: “73590-58-6”,
   “drugbankID”: “DB00338”},
]
}

Mapping Rule
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R2RML

Mapping rules (Triples maps) from 
relational tables into RDF (LogicalTable)

○ a base table
○ a view 
○ a valid SQL query

A Subject Map generates the subject of 
RDF triples

Predicate-Object Maps assign predicate 
and object to a subject

● predicate Map indicates the predicate
● object Map defines the object 

https://www.w3.org/TR/r2rml/
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R2RML

RefObject Maps allows for the definition of 
the  values of an object as the subjects of 
the RDF triples generated by another 
TriplesMap

Join indicates the condition to be satisfied 
to retrieve the subject values of the 
referenced triples map 

https://www.w3.org/TR/r2rml/
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R2RML

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338

Relational Table- Drug

Triples Map
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R2RML- Logical Table

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338
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R2RML- SubjectMap- PredicateObject Map

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338
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R2RML- Logical Table- SQL Query

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338
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DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338

Drug

SSN Name Birthdate Status

551 John Smith 20.12.1978 Alive with 
disease

552 Peter Lange 19.01.2010 Dead

553 Luis Perez 14.01.1959 Heatlhly

Patient

DrugID PatientID StartDate EndData

DB00361 551 20.01.2021 31.03.2021

DB00515 551 20.01.2021 31.03.2021

DB00338 551 20.01.2021 31.03.2021

Treatment
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Triples Map defining ex:Drug 



Page 50

Triples Map defining ex:Patient
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Triples Map defining the ex:Prescription Relationship 
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Join between Triples Maps
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R2RML Triples Maps- Abstract Description 

Given DIS=<O,S,M>, mapping rules in M are defined as safe horn clauses 

conjunctive query over the alphabet of  the data sources S with variables in   

conjunction of predicates representing classes and properties in O with variables in   

subset of   
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Types of Mapping Rules
Concept Mapping Assertions: a conjunctive query over the predicate symbols of data sources to 
create the instances of a class C in the ontology O; f(.) is a function symbol

body(.) f(y)

C(.)
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Types of Mapping Rules
Role Mapping Assertions: a conjunctive query over the predicate symbols of data sources 
to create the arguments of P(.,.) is a predicate in the ontology O f1(.) and f2(.) are function 
symbols

body(.) f1(y)

f2(y)P(.,.)
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Types of Mapping Rules
Role Mapping Assertions: a conjunctive query over the predicate symbols of data sources 
to create the arguments of P(.,.) is a predicate in the ontology O f1(.) and f2(.) are function 
symbols

body(.) f1(y)

f2(y)
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Types of Mapping Rules

Attribute Mapping Assertions: a conjunctive query over the predicate symbols of data source to create 
the arguments of an attribute A(.,.)  in the ontology O; f(.) is a function symbol

body(.)

A(.,.)

f(y)

y2
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RDF Mapping Language

Mapping language defined on top of 
R2RML

● Enables the collection of data from 
data sources in various formats

○ XML, JSON, CSV, RDB
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R2RML versus RML
R2RML RML

Logical Table - only relational database
(rr:logicalTable)

Logical Source - CSV, XML, JSON, HTML
(rml:logicalSource)

Table Name 
(rr:tableName)

URI pointing to the source
(rml:source) 
it can be RDB, JSON, XML, or CSV

Relational Table Column
(rr:column)

Reference
(rml:reference)

SQL query
(rr:sqlQuery)

Reference Formulation
(rml:referenceFormulation)

●  type of the source of the input data file, e.g. 
CSV, JSONPath, XPath.

Iteration per row in table Defined iterator
(rml:iterator)
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Examples- Logical Data Sources

60

DrugName DrugBankID DBpediaURL UMLS CUI UMLS Label

Vinorelbine DB00361 http://dbpedia.org/resource/Vinorelbine C0078257 Vinorelbine

Nivolumab DB09035 http://dbpedia.org/resource/Nivolumab C3657270 Nivolumab

Cisplatin DB00515 http://dbpedia.org/resource/Cisplatin C0008838 Cisplatin

Omeprazole DB00338 http://dbpedia.org/resource/Omeprazole C0028978 Omeprazole

dataSource1.csv

dataSource2.csv
PatientID PatientName PrescribedDrug StartDateTreatment EndDateTreatment Doses

5553 John Smith Vinorelbine 02.12.2020 02.02.2021 3mg

5553 John Smith Cisplatin 02.12.2020 02.02.2021 4mg

5554 Markus Hass Omeprazole 04.10.2020 02.12.2020 250mg

5554 Markus Hass Nivolumab 04.10.2020 02.12.2020 4mg
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Example- RML Mapping 
Rules
to define class Drug

61
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Example- RML 
Mapping Rules
to define class Patient

62
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63
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Example- RML Triple Map over an RDB Logical Source

rml:logicalSource

rr:subjectMap

rr:predicateObjectMap

Definition of the access 
to the database
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Tracing DIS using Declarative Mapping Rules

Classes’ Definition

SELECT DISTINCT  ?class ?typeDefinition ?source   WHERE 
            {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
              ?triplesmap   <http://semweb.mmlab.be/ns/rml#logicalSource> ?o .
              ?o  ?typeDefinition                                                                           ?source .
              ?triplesmap  <http://www.w3.org/ns/r2rml#subjectMap>            ?o2 .
              ?o2               <http://www.w3.org/ns/r2rml#class>                      ?class . }

Predicates’ Definition

SELECT DISTINCT  ?class ?property ?definition ?objectValue WHERE 
        {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
          ?triplesmap <http://semweb.mmlab.be/ns/rml#logicalSource>    ?o .
          ?o               ?typeDefinition                                                              ?source .
          ?triplesmap <http://www.w3.org/ns/r2rml#subjectMap>                ?o2 .
          ?o2              <http://www.w3.org/ns/r2rml#class>                          ?class .
          ?triplesmap <http://www.w3.org/ns/r2rml#predicateObjectMap>  ?o4 .
          ?o4             <http://www.w3.org/ns/r2rml#predicate>                     ?property.
          ?o4             <http://www.w3.org/ns/r2rml#objectMap>                   ?o6 .
          ?o6             ?definition   ?objectValue }

Number Mappings Per Class

SELECT ?class count(DISTINCT ?triplesmap) as ?numberMappings  WHERE 
            {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
              ?triplesmap   <http://semweb.mmlab.be/ns/rml#logicalSource> ?o .
              ?o  ?typeDefinition                                                                       ?source .
              ?triplesmap  <http://www.w3.org/ns/r2rml#subjectMap>             ?o2 .
              ?o2               <http://www.w3.org/ns/r2rml#class>                      ?class . } 

GROUP BY ?class ORDER BY DESC(?numberMappings)

Classes used in Mapping Rules but not in 
Ontology

SELECT DISTINCT ?class   WHERE 
            {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
              ?triplesmap   <http://semweb.mmlab.be/ns/rml#logicalSource> ?o .
              ?o  ?typeDefinition                                                                       ?source .
              ?triplesmap  <http://www.w3.org/ns/r2rml#subjectMap>            ?o2 .
              ?o2               <http://www.w3.org/ns/r2rml#class>                      ?class . 
             FILTER ( !EXISTS { ?class a owl:Class })} 

http://www.w3.org/ns/r2rml#class
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BENEFITS OF A DECLARATIVE KG CREATION 

04.12.20
20 66

DIS

Mapping Rules

Patient 

Ontology



  

Evaluating R2RML and RML Mapping Rules
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Various Parameters Impact Execution Time

Number of POMs (PropertyObjectMap) Join Selectivity Percentage of Duplicates

Type of Joins Data Partition

Engines are not equality impacted 
by  DIS configurations

David Chaves-Fraga, Kemele M. Endris, Enrique Iglesias, Óscar Corcho, Maria-Esther Vidal: What Are the Parameters that Affect the Construction of a Knowledge Graph? ODBASE 2019
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RML Operators

Simple Object Map (SOM) 
evaluates predicate object 
map in triples maps

Object Reference Map (ORM) 
implements a reference 
between two triples maps 

Object Join Map (OJM) 
implements a join condition  
between two triples maps

Enrique Iglesias, Samaneh Jozashoori, David Chaves-Fraga, Diego Collarana, Maria-Esther Vidal. SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. ACM CIKM 2020.

https://www.tib.eu/en/research-development/scientific-data-management/staff/samaneh-jozashoori/
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Logical Operators in Triples Maps

 

 

Object Reference Map (ORM): Given two sources S1 and S2, a property p,  and 
attributes A and B from S1 and S2, respectively. ORM(S1,S2,p,A,B) generates RDF 
triples (a,p,b) by projecting the attributes A and B from the natural join of S1 and S2.
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DECLARATIVE KNOWLEDGE 
GRAPH CREATION

Physical Data Structures avoid the 
generation of duplicated triples

● Predicate Tuple Table (PTT): 
for each predicate p, stores all 
the triples generated so far

● Predicate Join Table (PJTT): 
stores the subjects of the 
triples generated by a join. 

SDM-RDFizer implements three 
physical operators:
• Simple Object Map (SOM)
• Object Reference Map (ORM)
• Object Join Map (OJM)

Iglesias et al. SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. ACM CIKM 2020.
Jozashoori et al. FunMap: Efficient Execution of Functional Mappings for Scaled-Up Knowledge Graph Creation. ISWC 2020
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Predicate Tuple Table (PTT)

<http://example.org/Gene/PHF12_ET00000268756> <ex:geneLabel> 
“PHF12_ET00000268756”.

<http://example.org/Gene/ALDH3A1_ET00000395555> <ex:geneLabel> 
“ALDH3A1_ET00000395555”.

<TriplesMap1>
    rml:logicalSource [ rml:source "dataSource1" ];
     rr:subjectMap [
       rr:template "http://example.org/Gene/{Gene Name}";
       rr:class ex:Gene];     
     rr:predicateObjectMap [
       rr:predicate ex:geneLabel;
       rr:objectMap [ rml:reference "Gene Name" ] ];

Predicate Tuple Table (PTT) 
● stores RDF triples for each predicate  

generated so far
● Key encoding subject and object 

PTT ex:geneLabel 

Key

encode(http://example.org/Gene/PHF12_ET00000268756,
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET00000395555,
ALDH3A1_ET00000395555)
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Predicate Join Tuple Table (PJTT)

Predicate Join Tuple Table (PJTT) 
● stores values generated during execution of a join 

condition between two RML triple maps.
Index Hash table to the Source S2 of the parentTM: 

● Key encoding of each of value(s) of the attributes 
in the join condition

● Value set with the subject values in S2 associated 
with the values of the attributes in the hash key

<TriplesMap2>
    rml:logicalSource [ rml:source "dataSource1" ];
    rr:subjectMap [
      rr:template 
"http://example.org/Sample/{ID_sample}";
      rr:class ex:Sample] ;
    rr:predicateObjectMap [
      rr:predicate ex:sample_isTakenFrom_tumor;
      rr:objectMap [
        rr:parentTriplesMap <TriplesMap3>;
        rr:joinCondition [ rr:child "ID_sample"; 

         rr:parent "ID_sample" ;];].

  <TriplesMap3>
    rml:logicalSource [ rml:source "dataSource2" ];
    rr:subjectMap [
      rr:template "http://example.org/Tumor/{ID_tumor}";
      rr:class ex:Tumor ] .

Object Join Map (OJM)

U
tilized by the R

M
L operators
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Predicate Join Tuple Table (PJTT)

<TriplesMap2>
    rml:logicalSource [ rml:source "dataSource1" ];
    rr:subjectMap [
      rr:template 
"http://example.org/Sample/{ID_sample}";
      rr:class ex:Sample] ;
    rr:predicateObjectMap [
      rr:predicate ex:sample_isTakenFrom_tumor;
      rr:objectMap [
        rr:parentTriplesMap <TriplesMap3>;
        rr:joinCondition [ rr:child "ID_sample"; 

         rr:parent "ID_sample" ;];].

  <TriplesMap3>
    rml:logicalSource [ rml:source "dataSource2" ];
    rr:subjectMap [
      rr:template "http://example.org/Tumor/{ID_tumor}";
      rr:class ex:Tumor ] .

ID_sample ID_tumor

2193351 1455465

2193351 2064548

2196270 2061629

Gene Name ID_sample

ALDH3A1_ET00000395555 2193351

PHF12_ET00000268756 2193351

PHF12_ET00000268756 2196270

dataSource1 dataSource2
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Predicate Join Tuple Table (PJTT)

<TriplesMap2>
    rml:logicalSource [ rml:source "dataSource1" ];
    rr:subjectMap [
      rr:template 
"http://example.org/Sample/{ID_sample}";
      rr:class ex:Sample] ;
    rr:predicateObjectMap [
      rr:predicate ex:sample_isTakenFrom_tumor;
      rr:objectMap [
        rr:parentTriplesMap <TriplesMap3>;
        rr:joinCondition [ rr:child "ID_sample"; 

         rr:parent "ID_sample" ;];].

  <TriplesMap3>
    rml:logicalSource [ rml:source "dataSource2" ];
    rr:subjectMap [
      rr:template "http://example.org/Tumor/{ID_tumor}";
      rr:class ex:Tumor ] .

ID_sample ID_tumor

2193351 1455465

2193351 2064548

2196270 2061629

dataSource2

JPTT TripleMap2_ID_sample

TripleMap2_ID_sample

[2193351] [1455465,2064548]

[2196270] [2061629]
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Dictionary Table

Key

encode(http://example.org/Gene/PHF12_ET00000268756_
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET0000039555
5_ALDH3A1_ET00000395555)

Dictionary Table 
● Encodes each RDF resource 

with an identification number
Hash table: 

● Key RDF resource
● Value identification number in 

base 36

Key Value

http://example.org/Gene/PHF12_ET00000268756 1

ex:geneLabel 2

“PHF12_ET00000268756” 3

http://example.org/Gene/ALDH3A1_ET00000395555 4

“ALDH3A1_ET00000395555” 5

PTT ex:geneLabel 

Dictionary Table
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Dictionary Table

Key

encode(http://example.org/Gene/PHF12_ET00000268756_
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET0000039555
5_ALDH3A1_ET00000395555)

Dictionary Table 
● Encodes each RDF resource 

with an identification number
Hash table: 

● Key RDF resource
● Value identification number in 

base 36

Key Value

http://example.org/Gene/PHF12_ET00000268756 1

ex:geneLabel 2

“PHF12_ET00000268756” 3

http://example.org/Gene/ALDH3A1_ET00000395555 4

“ALDH3A1_ET00000395555” 5

PTT ex:geneLabel 

Dictionary Table

Key

1_3

4_5

PTT 2
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Physical Operators
Simple Object Map (SOM):
Triples Map tm1 defines predicate p on logical source S 
and tm1 subjectMap is f1(att1) 
and tm1 objectMap for p  is f2(att2) 

For each row in S
a.  Create an RDF triple t=(f1(row.att1),p,f2(row.att1)) 
b.  If encode(f1(row.att1),f2(row.att1)) does not belong to the PPT for p

i. Add encode(f1(row.att1),f2(row.att1)) to PPT for p
ii. Output (f1(row.att1),p,f2(row.att1)) to the KG

<http://example.org/Gene/ALDH3A1_ET00000395599> <ex:geneLabel> 
“ALDH3A1_ET00000395599”.

Key

encode(http://example.org/Gene/PHF12_ET00000268756,
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET00000395555,
ALDH3A1_ET00000395555)

Key

encode(http://example.org/Gene/PHF12_ET00000268756,
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET00000395555,
ALDH3A1_ET00000395555)

encode(http://example.org/Gene/ALDH3A1_ET00000395599,
ALDH3A1_ET00000395599)
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Physical Operators

Object Reference Map (ORM): 
Triples Map tm1 refers to Triples Map tm2 to define predicate p on logical source S:
and subject of tm1 is defined as f1(att1)
and subject of tm2 is defined as f2(att2)

For each row in S
a.  Create an RDF triple t=(f1(row.att1),p,f2(row.att1)) 
b.  If encode(f1(row.att1),f2(row.att1)) does not belong to the PPT for p

i. Add encode(f1(row.att1),f2(row.att1)) to PPT for p
ii. Output (f1(row.att1),p,f2(row.att1)) to the KG

<http://example.org/Mutation/A289VExon7> <ex:isMutation> <http://example.org/Gene/EGFR>

Key

encode(http://example.org/Mutation/A127delExon3,
http://example.org/Gene/EGFR)

Key

encode(http://example.org/Mutation/A127delExon3,
http://example.org/Gene/EGFR)

encode(http://example.org/Mutation/A289VExon7,
http://example.org/Gene/EGFR)
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Physical Operators- OJM

ID_sample ID_tumor

2193351 1455465

2193351 2064548

2196270 2061629

Gene Name ID_sample

ALDH3A1_ET00000395555 2193351

PHF12_ET00000268756 2193351

PHF12_ET00000268756 2196270

da
ta

S
ou

rc
e1

da
ta

S
ou

rc
e2

JP
TT TripleM

ap2_ID
_sam

ple
TripleMap2_ID_sample

[2193351] [1455465,2064548]

[2196270] [2061629]

 For each row1 in dataSource1
If there is an entry in the attributes of the join condition

Then extract the values associated with the entry and generate the 
corresponding entries in PPT

Key

encode(http://example.org/Sample/2193351,http://example.org/Tumor/1455465)

encode(http://example.org/Sample/2193351,http://example.org/Tumor/2064548)

encode(http://example.org/Sample/2196270,http://example.org/Tumor/2061629)
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Empirical Evaluation

04.12.20
20 81

Data Sources:
COSMIC: Coding point mutation 
dataset.  Raws were randomdly selected
Number of Rows: 10k, 100k, and 1M.
Duplicate Rates: 25% 
Operators per Mappings: SOM (1-4), 
ORM (2-5), and OJM (2-5)

RML Engines:
SDM-RDFizer v3.2 
RMLMapper v4.7
RocketRML v1.7.0
SDM-RDFizer- naive RML operators

Execution time: Elapsed time in RDF 
KG creation (reported by the time 
command of the Linux operating system)
Timeout: Five hours
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Empirical Evaluation

10K Rows 100K Rows

 RocketRML v1.7.0 and RMLMapper v4.7 timed out (2ORM, 5ORM, 2OJM, and 5OJM)
 RMLMapper v4.7 failed executing 2 OJM and 5OJM
 SDM-RDFizer physical operators speed up knowledge graph

Similar performance is observed in testbeds with different duplication rates and size

1M Rows
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How about planning the mapping rules?
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How about planning the mapping rules?
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How about planning the mapping rules?
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Impact of Planning the Execution of Mapping Rules
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Options of Planning the Partitions of Mapping Rules
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Iglesias, Jozashoori, Vidal, Scaling Up Knowledge Graph Creation to Large and Heterogeneous Data Sources. https://arxiv.org/abs/2201.09694
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Empirical Evaluation
Benchmarks:
SDM-COSMIC* created  by  randomly selecting genomic mutation   data  in  the COSMIC 
database**.

● Eight  different  logical  data sources  with  various  sizes  including  10k,  100k,  1M,  
and  10M  rows.

● Duplicate rates: 25%  or  75%.
● Mapping assertion (MA) configurations:

○ Conf7: Four  MAs (defining the same predicates) with four concepts and two 
multisource  role MAs.

○ Conf8: Six MAs  with  six  concepts  and  five  multi-source role MAs. Five 
child MAs are referring to the same parent MA.

○ Conf9: Eight MAs with eight concepts and seven multi-source role MAs.
Engines:

● RMLMapper v4.12, Morph-KGC   v1.4.1, SDM-RDFizer v3.6

Metrics:
● Execution Time 

 
* https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342/1 
** https://cancer.sanger.ac.uk/cosmic
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Impact of Planning Mapping Rules - Different Configurations
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Impact of Planning Mapping Rules - Different Configurations

Planning the execution of mapping rules: 
● plays a crucial role in the KG creation process
● consumes time, in simple cases, it may generate overhead 

and negatively impact an engine behavior 



  

Integrity Constraint Validation
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SHACL Language
The SHApes Constraint Language (SHACL):
•  W3C recommendation language for the declarative specification of integrity constraints 

over RDF KGs.
A SHACL shape: 
• represents a set of constraints that apply over the same entities.
• can refer to another shape, two represent constraints between entities of two types. 

SHACL Shapes

Targets Rules
Constraints

Target Classes Target Nodes

Target 
ObjectsOf

Target 
SubjectsOf

Cardinality Value Type

Property Paths
String 

Constraints

Node Shape

Property Shape
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SHACL Fragments

■
Validating an RDF graph against SHACL constraints is 
NP-hard in the size of the graph [Corman et al. 2018]
Tractable fragments of SHACL
                      only enables non-recursive shapes

                 does not allow negations through recursive shapes

                  does not allow negations but disjunction.

   
These fragments can be computed in polynomial time in the 
size of the result of the data required to validate the constraints 
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SHACL Example

The entities of class LCPatient:
• have exactly one name
• cannot have a treatment 

that includes Nivolumab 
and Vinorelbine

@prefix ex: <http://www.example.com/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .

ex:LCPatientShape rdf:type sh:NodeShape ;
                      sh:targetClass ex:LCPatient;
                      sh:property [
                      sh:path iasis:name ;
                      sh:minCount 1;
                      sh:maxCount 1 ;];
            sh:or [          
                      sh:not [ sh:property
                          [sh:path ex:hasTreatment ;
                           sh:hasValue ex:Vinorlbine ];];
                      sh:not [ sh:property
                          [sh:path ex:hasTreatment ;
                           sh:hasValue ex:Nivolumab ;];];].
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Transparency in Knowledge-driven Data Ecosystems-Example

Lung Cancer Protocols:

Afatinib  is a second generation Tyrosine Kinase 
Inhibitors (TKI) not recommended for non-small 
cell  lung cancer patients with Epidermal Growth 
Factor Receptor (EGFR)  mutation negative. 

Lapatinib is a dual Tyrosine Kinase Inhibitors 
(TKI)  for  non-small cell  lung cancer patients 
with HER2 mutation positive or EGFR positive.

ex:NSLCProtocol1
a sh:NodeShape ;
sh:targetClass ex:NSLC-EGFR-negative ;
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Afatinib;
sh:maxCount 0 ] 

ex:NSLCProtocol2
a sh:NodeShape ;
sh:targetClass ex:NSLC-HER2-OR-EGFR-positive 
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Lapatinib;
sh:minCount 1 ] 
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The data contains information about universities. 
Each university has to have one name. 
Professors are also present in the data. Each of 
them has exactly one name and at least one 
email address. Professors have at least one 
doctoral degree from a university. The knowledge 
graph also covers the departments of a 
university; they have exactly one name and are a 
sub-organization of a university. Professors work 
for at least one department. The university 
system also holds information about the courses 
taught. Each course has one name. Professors 
teach at least one course.

Motivating Example (1/2)

=1 name =1 name

=1 name

=1 name
=1 subOrganizationOf

≥1 worksFor

≥1 teacherOf

Graphical Representation of a SHACL Network

An RDF KG of
a University System

≥1 email  
SHACL represents intra- and inter-shape ICs on RDF KGs 

≥1 
docto

ralDegreeFrom

Professor Department

Course

University
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Impact of Shape Traversal on Validation Time

Professor

Course

Department

University

Department

University

Professor

Course

University

Department

Course

Professor

Random Traversal Sophisticated TraversalFollowing Links

Data needs to be loaded;
Professors validated in the end

Validation Time: 
8379 ms

Validation Time: 
6672 ms

Validation Time: 
525 ms

Opportunity to save by following 
links; Profs and Depts validated 
after the next shape

Use knowledge from 
previous validations;
improved performance

KNOWLEDGE 

EXPLOITATION

Knowledge Graph
~1 million triples

SHACL Network

Class #entities #valid
University 1000 8

Department 149 149

Professor 1267 7

Course 8126 8126

SHACL validation time depends on:
● size of KG and SHACL network
● KG quality 
● SHACL network traversal order 



Page 100

● SHACL validator over SPARQL endpoints
● Assumes RDF graph to validate is free of blank nodes
● SHACL shapes are translated into stratified Datalog rules
● Efficient validation of knowledge graphs

○ Interleaved execution

○ Query rewriting

○ Planning of traversal order

● Continuous generation of results
● Only JSON input so far instead of the standard

● SHACL fragments express recursive networks without negation 

Trav-SHACL
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SPARQL 
queries

  Endpoint

Validate S’ such that:Find:

[[TARG’(s)]]𝒢

[[𝛄’(DEF(s))]]𝒢

OUTPUTINPUT

5

Trav-SHACL: Validating Integrity Constraints



Page 102

Trav-SHACL: Validating Integrity Constraints

Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Trav-SHACL: Efficiently Validating Networks of SHACL Constraints,
 The Web Conference (WWW 2021). https://doi.org/10.1145/3442381.3449877

Trav-SHACL ...
● plans the traversal order
● interleaves the validation steps
● rewrites queries to make them more selective

https://github.com/SDM-TIB/Trav-SHACL
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Trav-SHACL: Experimental Results

Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Trav-SHACL: Efficiently Validating Networks of SHACL Constraints,
 The Web Conference (WWW 2021). https://doi.org/10.1145/3442381.3449877

● # Constraint query mappings:
○ 703K   in SHACL2SPARQL,
○  814     in Trav-SHACL.

● # Constraint query mappings:
○ 22.94M  in SHACL2SPARQL,
○   6.19M  in Trav-SHACL.

● Trav-SHACL always delivers results continuously, 
● generates the first answer faster,
● finishes the execution faster, 
● scales up to large knowledge graphs.

dief@t: continuous 
efficiency at time t
(TFFF)^-1: Time for 
First Answer (sec)
(ET)^-1: Execution 
Time (sec)
Comp: sum of 
(in)validated entities
T: Throughput 
(answer/sec)

Schema 3 LKGsSchema 1 MKGsSchema 2 SKGs

Metrics

● # Constraint query mappings:
○  839K  in SHACL2SPARQL, 
○  468K  in Trav-SHACL.

Impact of the interleaved execution
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Continuous Behavior

Small KG Medium KG Large KG

High Quality

Low Quality

Steadier 
Answer 
Generation

Prominent Difference
Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Trav-SHACL: Efficiently Validating Networks of SHACL Constraints,

 The Web Conference (WWW 2021). https://doi.org/10.1145/3442381.3449877



  

Pipeline for Knoowledge Graph Creation
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The SDM Knowledge Graph Creation Pipeline 
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Knowledge Graph Creation Pipeline

Tool Main Features
FALCON [Sakor et al. 2019,2020] • Links surface forms in a short text into entities in Knowledge Graphs (KGs) 

• Guided by rules of English morphology, and tokenization and compounding Resorts to 
alignments among entities, their labels, and definition in existing KGs (e.g., DBpedia, 
Wikidata, and UMLS) for disambiguation

SDM-RDFizer [Iglesias et al. 
2020,Jozashoori et al. 2020]

• RML compliant engine to create KGs 
• Implements RML mapping rules with a set of non-blocking operators 

EABlock Functions
[Jozashoori et al. 2022]

• Toolbox of functions for Entity Alignment to be included in RML mapping rules
• Functions perform named entity recognition over  short text and entity linking to 

DBpedia, Wikidata, and UMLS
Trav-SHACL
 [Figuera, Rohde, Vidal  2021]

• W3C recommendation language for specifying integrity constraints over RDF KGs
• A SHACL engine to validate constraints over KGs 
• Implements non-blocking validation strategies
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Demo and Video

https://service.tib.eu/ldmservice/dataset/sdmkgcPrepared by Akhilesh Vyas

https://service.tib.eu/ldmservice/dataset/sdmkgc
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BioFalcon

● Entity & Relation linking to UMLS
● Hybrid approach

○ Linguistic rules
○ Semantic type prediction model

● Receive input text from the user
● Extract & link the extracted entities to UMLS
● Available as an online API
                      https://github.com/SDM-TIB/falcon2.0 

        Demo:   https://labs.tib.eu/sdm/biofalcon/ 
                      https://service.tib.eu/ldmservice/service/falcon-demo

Ahmad Sakor, Isaiah Onando Mulang', Kuldeep Singh, Saeedeh Shekarpour, Maria-Esther Vidal, Jens 
Lehmann, Sören Auer. Old is Gold: Linguistic Driven Approach for Entity and Relation Linking of Short 
Text. NAACL 2019
Ahmad Sakor, Kuldeep Singh, Anery Patel, Maria-Esther Vidal. Falcon 2.0: An Entity and Relation Linking 
Tool over Wikidata. CIKM 2020

https://github.com/SDM-TIB/falcon2.0
https://labs.tib.eu/sdm/biofalcon/
https://service.tib.eu/ldmservice/service/falcon-demo
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BioFalcon https://labs.tib.eu/sdm/biofalcon/ 

https://labs.tib.eu/sdm/biofalcon/


  

SDM Knowledge Graph 
Creation Pipeline

Samaneh Jozashoori, 
Ahmad Sakor, 

Enrique Iglesias
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easyRML

            
               
                        https://github.com/SDM-TIB/easyRML

      Demo:       https://tib.eu/cloud/s/rFYL3CZHqYSQjFC

      

● Facilitates the RML Mapping rule generation
● Receives mappings data from the user via a user interface and translate it 

into a validated turtle file including RML mapping rules
● Omits the overhead of syntax verification and errors from the user side

https://github.com/SDM-TIB/easyRML
https://tib.eu/cloud/s/rFYL3CZHqYSQjFC
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Dragoman

                      https://github.com/SDM-TIB/Dragoman

        Demo:   https://tib.eu/cloud/s/ikjiHyf8RNrEHSY

● An Optimized, RML-engine-agnostic Interpreter for Functional Mappings 
● Plans the optimized execution of FnO functions integrated in RML mapping rules 
● Interprets and transforms mappings into function-free rules that can be translated into 

RDF using any RML-compliant engine 

★ Users can easily add their own scripts defining new functions
★ It can be adopted by any RML-compliant knowledge graph creation pipeline
★ Able to interpret composite functions
★ Able to interpret the list of outputs (which is the limitation of current RML language)
★ Is efficient (using optimization techniques) in terms of execution time

Samaneh Jozashoori, David Chaves-Fraga, Enrique Iglesias, Maria-Esther Vidal and Oscar Corcho. FunMap: 
Efficient Execution of Functional Mappings for Scaled-Up Knowledge Graph Creation. ISWC 2020

https://github.com/SDM-TIB/Dragoman
https://tib.eu/cloud/s/ikjiHyf8RNrEHSY


Page 114

SDM-RDFizer

            
                    https://github.com/SDM-TIB/SDM-RDFizer

      Demo:   https://www.youtube.com/watch?v=DpH_57M1uOE

      
Enrique Iglesias, Samaneh Jozashoori, David Chaves-Fraga, Diego Collarana, Maria-Esther Vidal. 
SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. ACM CIKM 2020.

https://github.com/SDM-TIB/SDM-RDFizer
https://www.youtube.com/watch?v=DpH_57M1uOE
https://www.tib.eu/en/research-development/scientific-data-management/staff/samaneh-jozashoori/
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● Understand the process of knowledge graph creation
● Understand the entity linking and knowledge extraction 

processes
● Define and execute simple mapping rules
● Define and execute mapping rules with functions such as 

entity linking functions
● Create a knowledge graph

Hands-on Goals
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The SDM Knowledge Graph Creation Pipeline
(Docker Install)

For Linux:
> sudo curl -L "https://github.com/docker/compose/releases/download/1.22.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

> sudo chmod +x /usr/local/bin/docker-compose
> docker-compose --version
More Info:

https://docs.docker.com/compose/install/
For Windows :

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
More Info:

https://docs.docker.com/docker-for-windows/install/
For Mac :

https://download.docker.com/mac/stable/Docker.dmg
More Info:

https://docs.docker.com/docker-for-mac/install/

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/mac/stable/Docker.dmg
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The SDM Knowledge Graph Creation Pipeline

 or download the tutorial from here, and unzip the file to a folder   (KGC_Workshop_2021):
https://github.com/SDM-TIB/KGC_Workshop_2021/archive/master.zip

here you should see the three containers running

> mkdir kgc_2021_tutorial
> cd kgc_2021_tutorial/
> git clone https://github.com/SDM-TIB/KGC_Workshop_2021.git

> cd KGC_Workshop_2021
> docker network create kgc_2021
> docker-compose up -d
> docker ps

https://github.com/SDM-TIB/KGC_Workshop_2021.git
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Example- A Unified Schema 
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Example- A Unified Schema 
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Task 1: Create knowledge mappings in RML using easyRML
        
              

Assignments- Defining New Knowledge Mappings
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Task 1: Understanding and creating knowledge mappings  

I. Open this URL in your browser http://localhost:5000 and create the 
mapping file

           Demo:       https://tib.eu/cloud/s/rFYL3CZHqYSQjFC

II. You can use the ontology and data file available at data folder
III. Provide the output path in easyRML interface e.g. 

/easyRML/sources/

IV. Check the generated mapping file:

              

Assignments- Defining New Knowledge Mappings

> cd /easyrml
> ls -l
> less given_name_to_the_mapping_file.ttl

http://localhost:5000
https://tib.eu/cloud/s/rFYL3CZHqYSQjFC
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Assignments- Entity Linking Integrated in the Knowledge Mapping

Disorder Drug

Drug_Disorder

interactor1 interactor2

Drug_Disorder_Dataset

Drug Disorder

C0995188 C0948380

C0034266 C0376358

Disord
er

Metastatic_Colorectal_cancer

rdf:type
Cetuxima

b

DB00002

Drug

rdf:type
sdmkgc:drugLabel

How you want to model 
this data and integrate into 

your KG!!

What you 
already 
have in 

your KG!
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Task 2: Execute an entity linking as pre-processing
a) Analyze Entities to be Linked

b)  Execute the Falcon entity linking component

c) Analyze the Outcomes of the entity linking process

          

       
                 

Assignments- Entity Linking as pre-processing

> cd data  
> ls -l
> less drugs.csv
> cd ..

> docker exec -it kgc_workshop_2021 python3 /tutorial/src/drugs_umls_link.py

> cd data  
> ls -l
> less drugs.csv
> cd ..
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Task 3: Execute knowledge mappings in which the entity linking is 
integrated as functions
I. Analyze the data you want to integrate into the KG

II. Apply Dragoman to execute functions in knowledge mappings and 
transforms the data integration into function-free knowledge 
mappings (first analyze the required config file and then execute)

III. Analyze the outcome of Dragoman           

        
              

Assignments- Entity Linking Integrated in the Knowledge Mapping

> cd data  
> ls -l
> less drug_disorder.csv
> cd ..

> less configs/config-Dragoman.ini
> docker exec -it kgc_2021_dragoman python3 /app/run_translator.py 
/app/configs/config-Dragoman.ini 

> cd dragoman  
> ls -l
> less drug_disorder_transferred_mapping.ttl
> cd ../..
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Task 4: Execute knowledge mappings in which the entity linking is 
integrated as functions
I. Apply SDM-RDFizer to execute generate rdf triples (KG) (first 

analyze the required config file and then execute)

II. Explore the RDF files that composed the knowledge graph           

        
              

Assignments- Generate KG based on defined knowledge mappings 

> cd rdf/output/rdf  
> ls -l
> less drug_disorder.nt
> cd ../..

> less configs/config-SDM-RDFizer.ini
> docker exec -it kgc_2021_semantic_enrichment python3 
/app/rdfizer/run_rdfizer.py /app/configs/config-SDM-RDFizer.ini  
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Task 6: Creating a Knowledge Graph in GraphDB

           
          
              
        
              

Assignments- Uploading The KG into GraphDB

http://localhost:7200/
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Task 6: Creating a Knowledge Graph in GraphDB

           
          
              
        
              

Assignments- Uploading The KG into GraphDB
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Task 6: Creating a Knowledge Graph in GraphDB

           
          
              
        
              

Assignments- Uploading The KG into GraphDB



  

Validation of Knowledge Graphs
Philipp D. Rohde, 

Julian Gercke
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Requirements

● Docker
https://docs.docker.com/get-docker/

● docker-compose
https://docs.docker.com/compose/install/

https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
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1. Clone the repository
git clone https://github.com/SDM-TIB/KGV_Workshop_2021.git

2. Start the containers
cd KGV_Workshop_2021
docker-compose up -d

3. Wait for the containers to start
You can check the status of the endpoint by visiting
http://localhost:15000/sparql

Getting Started

http://localhost:15000/sparql
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University Data

● LUBM benchmark
● One University
● 14 Classes, e.g.,

○ Full/Assistant/Associate Professors
○ (Under-)Graduate Students
○ (Graduate) Courses
○ Departments
○ Publications
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Task 1: Create Constraints

1. Go to the directory ‘shapes/lubm’
2. Open the file ‘University.json’
3. Add the following constraint:

a. Universities have at most one name
4. Open the file ‘FullProfessor.json’
5. Correct the target query
6. Add the following constraints:

a. Full professors are teacher of at least one course (shape Course)
b. Full professors have exactly one name
c. Full professors have at least one email address (ub:emailAddress)
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Task 1: Create Constraints (Cont.)

7. Open the file ‘Department.json’
8. Add the following constraints

a. Departments are a sub-organization of exactly one
University (shape University)

b. Departments have exactly one name
9. Open the file ‘Publication.json’

10. Add the following constraint
a. A publication does not have an undergraduate student as author



Page 135

Task 2: Knowledge Graph Validation

1. Go to http://localhost:5001/validate

2. Enter the required details
a. URL of the knowledge graph
b. Path with the shapes

3. Validate the knowledge graph

4. Examine the result

http://localhost:5001/validate


  

Future Directions
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Transparency in Knowledge-driven Data Ecosystems-Example

Lung Cancer Protocols:

Afatinib  is a second generation Tyrosine Kinase Inhibitors (TKI) not recommended for 
non-small cell  lung cancer patients with Epidermal Growth Factor Receptor (EGFR)  
mutation negative. 

Lapatinib is a dual Tyrosine Kinase Inhibitors (TKI)  for  non-small cell  lung cancer patients 
with HER2 mutation positive or EGFR positive.

ex:patient1 rdf:type ex:NSCLG-EGFR-negative .
ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive .
ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib .

Instances of a knowledge graph:
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Querying Declarative Mapping Rules

SPARQL Query to Retrieve RML Mapping Rules 
defining the classes ex:NSCLG-EGFR-negative 
and ex:NSCLG-HER2-OR-EGFR-positive 
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Validating Integrity Constraints 

ex:NSLCProtocol1
a sh:NodeShape ;
sh:targetClass ex:NSLC-EGFR-negative ;
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Afatinib;
sh:maxCount 0 ] 

ex:patient1 rdf:type ex:NSCLG-EGFR-negative .
ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive .
ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib .

Evaluation of SHACL shapes enable the validation of the protocols 

ex:NSLCProtocol2
a sh:NodeShape ;
sh:targetClass ex:NSLC-HER2-OR-EGFR-positive ;
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Lapatinib;
sh:minCount 1 ] 

Instances of a knowledge graph:

But…. the evaluation of SHACL shapes (or any other language) does not allow 
tracing and explaining the invalidation of the constraints.
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Provenance Meta-data to Enhance Transparency

<<ex:patient1 rdf:type ex:NSCLG-EGFR-negative>> 
  prov:wasGeneratedBy        ex:triplesMap1;
  prov:generaredAtTime       "2021-09-08T08:20:00+06:00"^^xsd:dateTimeStamp;
  kde-prov:subjectRawValue   "John Smith".

<<ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive>> 
  prov:wasGeneratedBy       ex:triplesMap2;
  prov:generaredAtTime      "2021-09-08T08:20:00+07:00"^^xsd:dateTimeStamp;
  kde-prov:subjectRawValue  "John Smith".

<<ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib>> 
  prov:wasGeneratedBy       ex:triplesMap3;
  prov:generaredAtTime      "2021-09-08T08:20:00+08:00"^^xsd:dateTimeStamp;
  kde-prov:subjectRawValue  "John Smith";
  kde-prov:objectRawValue    "atinib".

<<subject property object>> 
  prov:wasGeneratedBy       triplesMap;
  prov:generaredAtTime      time-stamp;
  kde-prov:subjectRawValue  subjectValue;
  kde-prov:objectRawValue   objectValue.

RDF-star (or Property) graphs to describe how RDF triples have been computed
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Transparency in Knowledge-driven Data Ecosystems

<<ex:patient1 rdf:type ex:NSCLG-EGFR-negative>> 
  prov:wasGeneratedBy   ex:triplesMap1;
  prov:generaredAtTime "2021-09-08T08:20:00+06:00"^^xsd:dateTimeStamp;
  kde-prov:subjectRawValue  "John Smith".
<<ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive>> 
  prov:wasGeneratedBy   ex:triplesMap2;
  prov:generaredAtTime "2021-09-08T08:20:00+07:00"^^xsd:dateTimeStamp;
  kde-prov:subjectRawValue  "John Smith".
<<ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib>> 
  prov:wasGeneratedBy  ex:triplesMap3;
  prov:generaredAtTime "2021-09-08T08:20:00+08:00"^^xsd:dateTimeStamp;
  kde-prov:subjectRawValue  "John Smith";
  kde-prov:objectRawValue    "atinib".

KDE=<O,S,M,IC>
  O:  Ontology
  S:  Data Sources
  M:  RLM + FnO Mappings
  IC: SHACL shapes

Traceable Knowledge Graph
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Classes in Traceable Knowledge Graphs 

Powered by 
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Queries against Traceable Knowledge Graphs 
PREFIX ex: <http://example.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX kde-prov: <http://kde.org/prov#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX rr:  <http://www.w3.org/ns/r2rml#>
PREFIX rml: <http://semweb.mmlab.be/ns/rml#>
SELECT distinct ?p ?tm1 ?subjectValue1 ?objectValue2 ?logicalSource1 ?subject1 ?predicate1 ?objectMap1 ?tm2 
WHERE {
  <<?p ex:hasOncologicalTreatment dbpedia:Afatinib>>  prov:wasGeneratedBy       ?tm1;
                                                      kde-prov:subjectRawValue  ?subjectValue1;
                                                      kde-prov:ojectRawValue    ?objectValue2.

  <<?p rdf:type ex:NSCLG-EGFR-negative>> prov:wasGeneratedBy  ?tm2; kde-prov:subjectRawValue ?subjectValue1.

  ?tm1      rml:logicalSource ?logical1.
  ?logical1 rml:source        ?logicalSource1.
  ?tm1      rr:subjectMap     ?subject1.  
  OPTIONAL {  ?tm1 rr:predicateObjectMap ?pObjectMap .
              ?pObjectMap  rr:predicate          ?predicate1 .
              ?pObjectMap  rr:objectMap          ?objectMap1 .
              ?objectMap1  ?mode                 ?sourceAttribute1} .}

?p ?tm1 ?subjectValue1 ?objectValue2 ?logicalSource1 ?subject1 ?predicate1 ?objectMap1 ?tm2

ex:patient1 ex:triplesMap3 John Smith atinib /data/patientTreatments.csv ex:AnonymizationFunction3 ex:hasOncologicalTreatment ex:DBpediaFunction ex:triplesMap1

Powered by 
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DeTrusty: Federated Query Engine for Validating KGs

Endpoint

INPUT

Query

OUTPUT

⋈
SPARQL Query Execution SHACL Schema Validation

Query Result Annotation

Minimize Execution Time

Finding physical plan for query Q whose execution validates the SHACL 
shape schema S and produces the answers of Q efficiently

Philipp D Rohde  SHACL Constraint Validation during SPARQL Query Processing. VLDB Workshop. 2021
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Traceable Query Processing

Q= SELECT distinct ?p ?drug
WHERE {
  ?p ex:hasOncologicalTreatment ?drug}

KG1

[[Q]]KG1 = 
{{(?p,ex:patient1),(?drug,dbpedia:Afatinib)},
{(?p,ex:patient2),(?drug,dbpedia:Vinorelbine)},
{(?p,ex:patient3),(?drug,dbpedia:Nivolumab)}}

Traditional Approach for 
Query Processing

Q= SELECT distinct ?p ?drug
WHERE {
  ?p ex:hasOncologicalTreatment ?drug}

KDE+KG1

[[Q]]KDE
KG1 

 = {
({(?p,ex:patient1),(?drug,dbpedia:Afatinib)},
 {(ex:patient1,dke:invalidates,ex:NSLCProtocol1),
  (ex:patient1,dke:invalidates,ex:NSLCProtocol2)},
 {{(ex:patient1 prov:wasGeneratedBy       ex:triplesMap1),
   (ex:patient1 kde-prov:subjectRawValue "John Smith")}
 { (dbpedia:Afatinib prov:wasGeneratedBy  ex:triplesMap3),
   (dbpedia:Afatinib kde-prov:subjectRawValue "John Smith"),

   (dbpedia:Afatinib kde-prov:objectRawValue "atinib")}}),...}

Traceable Query Processing

set of SPARQL mappings
SHACL validation

Triple generation explanation
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SELECT ?p ?drug WHERE {
 ?p ex:hasOncologicalTreatment 
?drug }

({(?p,ex:patient1),(?drug,dbpedia:Afatinib)},
 {(ex:patient1,dke:invalidates,ex:NSLCProtocol1),

  (ex:patient1,dke:validates,ex:NSLCProtocol2)}),...}

● subject star-shaped 
decomposition

● one star ≈ one class

Query Decomposition

● interleaved validation
● subset of shape schema

SHACL Validation

● add SHACL validation result 
as metadata

● explainability

Query Result Annotation Novelty of the approach:
● identification of query plan able to combine 

query answering with integrity constraint validation
● explainability of SPARQL query results
● optimizations in SHACL validation

DeTrusty: Federated Query Engine for Validating KGs

Philipp D Rohde  SHACL Constraint Validation during SPARQL Query Processing. VLDB Workshop. 2021
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DeTrusty - Initial Results

RQ: Is the performance improved by 
applying the proposed approach?

WatDiv
● 10 million triples
● 3-5 triple patterns per query
● less than 100 query results

32 constraints
100,000 instances

Role Product
Category Genre

24 constraints
25,000 instances

2 constraints
145 instances

The performance is improved, but more studies are needed.

Philipp D Rohde  SHACL Constraint Validation during SPARQL Query Processing. VLDB Workshop. 2021
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What are we still missing? 

Case 1: Vinorelbine 
and Cenobamate may 
interact.

Case 2: Vinorelbine 
and Cisplatin interact, 
but are there further 
studies that report the 
effectiveness of them?

Case 3: Vinorelbine 
and Nivolumab cannot 
be prescribed together. 
This must be an error!

Case 4: Are there further 
studies that support the 
effectivenes of  
Vinorelbine? 
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TRUSTKG 
 
• Data integration paradigm to trace down 

provenance and causal relations

• Ontologies to document causality and explanation 

• Knowledge graph will integrate data, ontologies, 
and causality models

• Validation and explanation of integrity constraint 
satisfaction during data collection, curation, 
integration, and query processing

• Fine-grained representation of scientific 
publications to support literature-based explanation

• Visualization of explanations of causal relations 

• Traceable data privacy regulations 

• Evaluated in the context of lung and breast cancer
Leibniz Best Minds: Programme for Women Professors 
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Conclusions

iASiS: Big Data to Support 
Precision Medicine and 

Public Health Policy. Final 
Remote Review Meeting, 

Sept. 2020

150
● Data Analytical and Machine Learning 

methods able to exploit meta-data to 
enhance explainability

● Planning the execution of mapping rules 
and integrity constraints enable scalable 
pipelines of KG creation and validation

Lessons Learned Follow-up

● Efficient query processing and  
management techniques 

● Declarative mapping languages  
enable data transparency, 
interpretability, and tracking down 
data management

● Formalism to model causality and techniques 
to mine and explain causal relations on KGs
Fine-grained representation of (meta)-data

● Data Integration Systems state 
foundations for a declarative 
specification of KGs



Page 151

https://github.com/SDM-TIB

Availability

Apache license 2.0 license

Adoption and Usability
Several European and national funded  projects are already using the Knowledge Graph Creation Pipeline 

Utility
Docker image 

Documentation in 

Video 

https://www.youtube.com/watch?v=DpH_57M1uOE

P4-LUCAT

ImProViT

The Knowledge-driven Data Ecosystem as a Resource

https://github.com/SDM-TIB/SDM-RDFizer
https://www.youtube.com/watch?v=DpH_57M1uOE
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The Scientific Data Management Group 



Thanks for your attention!

Maria-Esther Vidal
        maria.vidal@tib.eu           @MEVidalSerodio

@TIB_SDM
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Professor

Course

University

=1 undergraduateDegreeFrom≥1
 d

oc
to

ra
lD

eg
re
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ro
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≥1 w

ork
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or

≥1 teacherOf

Graduate
Course

Graduate
Student

≥1 memberOf

=[0,
1] H

iwiO
f

=[1, 3] takes

=1 subOrgOf

=1 name
=1 advisor
≥1 email
≥1 phone

=1 name
≥1 email  

=1 name

=1 name

=1 name

Department

Shapes Schema: 
Integrity Constraints on the KG

INPUT

Set of classified 
(valid / invalid) entities

OUTPUT
KG of a University System 

with 37,419 entities
(~1M triples)

Example

3
=1 name
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Trav-SHACL: Reordering of a Shape’s Integrity Constraints

7

by determining inter- max-constraint violations 
from constraint’s lower bound

Define and evaluate max-constraint 
queries

Skip needless max-constraint queries

containing all local and inter-shape 
min-cardinality constraints of shape s

negating each max-cardinality restriction

Define and evaluate single min-constraint 
queryUniversity

=1 subOrgOf
Department

≥1 name

SELECT DISTINCT ?x, ?uni WHERE {

    ?x ub:subOrgOf ?uni.

    { SELECT DISTINCT ?x WHERE {

        ?x ub:name ?name.

    }}

}

Min-constraints
SPARQL query:

SELECT DISTINCT ?x, ?uni_1, ?uni_2 WHERE {

    ?x ub:subOrgOf ?uni_1.

    ?x ub:subOrgOf ?uni_2.

    FILTER(?uni_1 != !uni_2)

    { SELECT DISTINCT ?x WHERE {

        ?x ub:name ?name.

    }}

}

Max-constraint 
SPARQL query:

SELECT DISTINCT ?x, ?uni_1, ?uni_2 WHERE {

    ?x ub:subOrgOf ?uni_1.

    ?x ub:subOrgOf ?uni_2.

    FILTER(?uni_1 != !uni_2)

    { SELECT DISTINCT ?x WHERE {

        ?x ub:name ?name.

    }}

}

EXCLUDED FROM 

VALIDATION

1

2

3



Page 158

SELECT DISTINCT ?x, ?uni WHERE {

  ?x rdf:type ub:Department.

  {

   }

}

Trav-SHACL: Query Rewriting

uses SPARQL LIMIT and OFFSET clauses

  

    SELECT DISTINCT ?x, ?uni WHERE {

     ?x ub:subOrgOf ?uni.

{ SELECT DISTINCT ?x WHERE {

   ?x ub:name ?name.

}}

  }

University
≥1 subOrgOf

Department

≥1 name

 VALUES ?uni {ub:LUH}.

 ORDER BY ?x LIMIT 10000 OFFSET 0

Pushing FILTERs

Partition of Non-selective Queries

adds selectivity to 𝛄(DEF(s))

filters TARG(s) and 𝛄(DEF(s)) with 
knowledge from out-neighbor shape

Min-constraints SPARQL query 𝛄(DEF(Department)) 8

Target-based Query Rewriting
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Trav-SHACL: Interleaved Execution

University(X).
Department(X) <- University(Y), hasDep(Y,X).

to classify every v  in  V𝒢  until 

from evaluation of TARG(s) and 𝛄(DEF(s))

for entities and relations between 
neighboring shapes

University(“LUH”).
Department(“Informatics”) <- University(“LUH”), 
                     hasDep(“LUH”,Informatics”).

“LUH” entity is valid, and 
hasDep(“LUH”,Informatics”)

Department(“Informatics”) is inferred and
“Informatics” is valid.

9

University
≥1 subOrgOf

Department

≥1 name

Ground Logic Rules

Saturate

Collect Data
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Trav-SHACL: Execution TimeProposed Solution

Selective queries evaluated
19.75 less 
grounded 

rules

Same 
validation 

result

Shapes Schema Traversal Identified by Trav-SHACL:

Validation Summary:

Trav-SHACL validation:

● sound validation result,
● less memory consumption, 
● faster execution time, 
● scalable to large KGs

23.97 
times 
faster

Trav-SHACL 
summary

Trav-SHACL performs a non-blocking 
execution and produces results faster

Answer Traces:

10


