
Prof. Dr. Maria-Esther Vidal
Scientific Data Management Group

Challenges for Efficiently
Creating and Maintaining

Knowledge Graphs

Why do we need Knowledge Graphs?

Page 3

Knowledge Graphs

Knowledge graphs
● data structures
● represent the convergence

of knowledge and data as
factual statements

● use a graph data model

Page 4

Spectrum of Knowledge Graphs

Page 5

An Example of Knowledge Graphs

Entities and relationships are first-class
citizens and representation of
relationships between entities

Vinorelbine is a chemotherapy drug
that is used in the treatment of breast
cancer and non-small cell lung cancer
(NSCLC).
Cenobamate is an antiepileptic drug
used to treat partial-onset seizures.
The serum concentration of
Vinorelbine can be decreased when it
is combined with Cenobamate.

Page 6

Properties of Knowledge Graphs

Natural representation of
metadata

▪Meaning of entities and
relationships

Metadata and data can be
empowered with inference
processes to deduce new facts

Page 7

Knowledge Graphs: Benefits and Challenges

 Knowledge graphs

● Provide a formal specification of the
meaning of entities

○ Metadata: data describing and
providing information about other data

● Model taxonomies of entities,
relationships, and classes

● Develop a common understanding of a
domain

● Natural representation of metadata
○ Meaning of entities and

relationships
● Metadata and data can be empowered

with inference to deduce new facts

Page 8

Analysis on top of Knowledge Graphs

Lung Cancer Protocols:

Afatinib is a second generation Tyrosine Kinase Inhibitors (TKI) not recommended for
non-small cell lung cancer patients with Epidermal Growth Factor Receptor (EGFR)
mutation negative.

Lapatinib is a dual Tyrosine Kinase Inhibitors (TKI) for non-small cell lung cancer patients
with HER2 mutation positive or EGFR positive.

ex:patient1 rdf:type ex:NSCLG-EGFR-negative .
ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive .
ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib .

Instances of a knowledge graph:

Is this an error in the data stored in the KG or
did ex:patient1 receive this treatment?

Page 9

Analysis on top of Knowledge Graphs

Survival Analysis of non-small lung cancer patients categorized by tumor
stage and different oncological treatments in combination with Vinorelbine

Case 1: Vinorelbine
and Cenobamate may
interact.

Case 2: Vinorelbine
and Cisplatin interact,
but are there further
studies that report the
effectiveness of them?

Case 3: Vinorelbine
and Nivolumab cannot
be prescribed together.
This must be an error!

Case 4: Are there further
studies that support the
effectivenes of
Vinorelbine?

How can support a trustable
validation of the reported analysis?

Page 10

Challenges for tracing data integrated in Knowledge Graphs

04.12.20
20 10

Case 1: Vinorelbine
and Cenobamate may
interact.

Human
readable
representation.

A data integration system needs to be able to access and integrate
unstructured data collected from different text data sources

Page 11

Challenges for tracing data integrated in Knowledge Graphs

04.12.20
20 11

Case 2: Vinorelbine and
Cisplatin interact, but are
there further studies that
report the effectiveness of
them?
Case 4: Are there further
studies that support the
effectivenes of
Vinorelbine?

A data integration system needs to be able to access and integrate
unstructured data collected from different text data sources

Page 12

Challenges for tracing data integrated in Knowledge Graphs

04.12.20
20 12

Case 3: Vinorelbine and
Nivolumab cannot be prescribed
together. This must be an error!

Data transparency requires tracking down all the steps of the data-driven pipeline
• accounting for the decisions made by each component of the pipeline
• describing of raw data and quality issues present in the raw data sets
• validating of clinical data to verify if there are patients that take Vinorelbine and Nivolumab together
• certifying that data protection regulations are respected in all the steps!

Page 13

Knowledge Graphs: Benefits and Challenges

 Knowledge graphs

● Provide a formal specification of the
meaning of entities

○ Metadata: data describing and
providing information about other data

● Model taxonomies of entities,
relationships, and classes

● Develop a common understanding of a
domain

● Natural representation of metadata
○ Meaning of entities and

relationships
● Metadata and data can be empowered

with inference to deduce new facts

 Data Integration
● Natural Language and Image Processing for

recognizing relevant entities
● Techniques for entity linking and alignment
● Data quality assessment and curation

 Knowledge Representation
● Expressive formalism and reasoning

mechanisms
● Methods for integrity constraint validation

 Knowledge Discovery
● Methods able to discover patterns in

knowledge graphs
 Predictive Models

● Capable to exploit the semantics encoded in
knowledge graphs towards explainable AI

Computationally Expensive in Time and Space

1. Data Integration Systems, Data Ecosystems, and
Knowledge Graphs

2. Declarative Mapping Languages

3. Evaluation of Pipelines for Knowledge Graph
Creation

4. Integrity Constraint Validation

5. Pipelines for KG Creation

6. Future Directions

Agenda

Data Integration Systems, Data
Ecosystems, and Knowledge
Graphs

Page 16

3646

Page 17

Data, Knowledge and Interoperability [Wiederhold’92]

Page 18

Mediator and Wrapper Architecture [Wiederhold’92]

Wrappers:
● provide access to heterogeneous data sources. For

each data
● export information about source schema, data, and

query processing capabilities.
Mediators:

● store the information provided by wrappers in a
unified view of all available data with a central data
dictionary

● decompose input queries into sub-queries that can
be executed by wrappers

● gather results from wrappers and create answers to
the user query

Mediator

Page 19

3646 3569

Page 20https://www.google.de/books/edition/Principles_of_Data_Integration/5Rg679tjhFQC?hl=en&gbpv=1

2012

Page 21

Data Integration Systems[Lenzerini2002]

 DIS=<O,S,M>

 Let O be a set of general concepts in a general schema or ontology.

 Let S={S1,..,Sn} be a set of symbols representing data sources.

 Let M be a set of mappings between data sources in S and general concepts in O.

Page 22

 Global-as-View (GAV):
▪ Concepts in the Global Schema (O) are defined in terms of combinations of

Sources (S).

 Local-As-View (LAV):
▪ Sources in S are defined in terms of combinations of Concepts in O.

 Global- & Local-As-View (GLAV):
▪ Combinations of concepts in the Global Schema (O) are defined in

combinations of Sources (S).

Data Integration Systems- Paradigms [Lenzerini2002]

Page 23

Data Integration Systems

Data Integration
System

CentralizedDistributed

Homogeneous

Heterogeneous

Data Integration
System

Data Integration
System

Wrapper Wrapper Wrapper

Data Integration
System

Page 24

Knowledge Graphs

A Knowledge Graph is a graph KG=(O,V,E):
● O is a unified schema
● V is a set of entities representing data, information, or knowledge.

Types of the entities in V are defined in O
● E is a set of edges between entities in V. Edges are labeled with

predicates in O. The semantics of these predicates is also stated in O.

Materialized Data
Integration System

Vidal M.E., et al. Transforming Heterogeneous Data into Knowledge for Personalized Treatments - A Use Case. Datenbank-Spektrum 19(2):(2019)
Geisler S., Vidal M-E, et al. Knowledge-driven Data Ecosystems Towards Transparency. ACM Journal Data and Information Quality. 2021

Page 25

Virtual Data Integration Systems

● Mapping rules in M are used to rewrite a
query Q over unified schema O into a
query Q’ in the data sources in S

● Query planning is performed to optimized
Q’ and generate a query plan QP on the
data sources

● Query execution engine evaluates QP in
the selected data sources

● Query answers are used to create a
portion of the Knowledge Graph

Portion of Knowledge
Graph (KG)

Page 26

Virtual Data Integration Systems
Ontop (Calvanese et al.)
https://ontop-vkg.org/

● Creates a virtual RDF KG during the evaluation of SPARQL against relational
databases.

● Mapping rules are specified in R2RML
● Ontology specified in RDFS or OWL QL

Ultrawrap (Sequeda and Miranker)
https://www.cs.utexas.edu/~miranker/s
tudentWeb/UltrawrapHomePage2.html

● The unified schema O is created from the SQL DDL of a relational database
● The relational tables are represented as triples using views (virtual triple store)
● Transform every SPARQL query against the O into SQL on the virtual triple views

Morph (Priyatna et al.)
https://github.com/fpriyatna/morph

● Creates RDF KGs from relational data sources based on a SPARQL query and
R2RML mapping rules

● Employs query execution techniques to generate efficient SQL queries against
the relational databases

Ontario (Endris et al.)
https://github.com/SDM-TIB/Ontario

● Executes SPARQL queries against data sources in various formats
○ XML, relational databases, JSON

● Implements query execution techniques to generate efficient query plans

Morph-CSV (Chaves et al.) ● Enhances the process SPARQL-SQL over tabular data (defined as CSV files)
with domain-specific constraints

● Implements query execution techniques to generate efficient query plans

Page 27

Materialized Data Integration Systems

● Data sources are integrated as
instances of the unified schema O

● Mapping rules in M are executed to
generate the unified schema O
instances

● Controlled vocabularies are utilized for
data annotation as basis for entity
alignment

● Usually implemented by
Extraction-Transform-Load (ETL) tools

Knowledge Graph
(KG)

Page 28

Materialzed Data Integration Systems

RMLMapper (Dimou et al.
2016)
https://github.com/RMLio/r
mlmapper-java

● In-memory engine. RML compliant engine to create RDF graphs from data sources in
various formats

○ local formats: CSV, JSON.XML, Excel file, LibreOffice
○ remote access: SPARQL endpoints, Web APIs, relational databases

● Provides drivers to access multiple types of data sources
○ Oracle,, MySQL,PostgreSQL, SQLServer, and WebAPIs

SDM-RDFizer (Iglesias et at.
2020)
https://github.com/SDM-TIB
/SDM-RDFizer

● RML compliant engine able to transform data into RDF
○ local formats: CSV, JSON.XML
○ remote access: relational databases

● Implement data structures and physical operators to efficiently execute RML mapping rules
● Produces results incrementally
● Able to trace down the execution of RML mapping rules

Morph-KGC
(Arenas-Guerrero et al.)
https://github.com/oeg-upm
/morph-kgc

● RML compliant engine able to transform data into RDF
○ local formats: CSV, JSON.XML
○ remote access: relational databases

● Implement planning techniques for planning mappings
○ based on mapping partitioning

Page 29

Materialzed Data Integration Systems

Rocket-RML (Şimşek et al.)
https://semantifyit.github.io/
RocketRML/

● RML compliant engine
○ XML, JSON, CSV

● Tuned to work with large XML or JSON files

SPARQL-Generate (Lefrançois
et al.)
https://ci.mines-stetienne.fr/
sparql-generate/

● Extends SPARQL 1.1 binding function mechanism to
○ query and iterate over data streams in various formats

■ RDF, SQL, XML, JSON, CSV, GeoJSON, WebSocket streams, Web APis
○ transform the collected data using SPARQL 1.1 functions and operators
○ populate instances in an RDF based on Graph-pattern templates

Chimera (Scrocca et al.)
https://github.com/cefriel/chi
mera

● Generic pipeline for RDF graph creation and configurable for RML
● Implements optimization techniques for managing large JSON and XML files
● Plans the execution of mapping rules to reduce memory consumption
● Generates RDF triples incrementally and upload them in a triple store

Page 30

A Knowledge-driven Data Ecosystem

Data Operators: are functions used for accessing or managing
data in the data sets.
 Domain ontologies: provide unified views of the concepts,
relationships, and constraints of the domain of knowledge.
Properties: enable the definition of data quality, provenance, and
data access regulations of the data.
Descriptions: characteristics of data sources using standards and
controlled vocabularies
Mappings: correspondences among the different components.
Regulations: for data access and data privacy preservation.
Strategies & Business Models: to define stakeholders and roles. Services able to exploit knowledge encoded in the
metadata to support transparency and traceability
• Question answering, query processing, data integration,
entity and predicate linking, and data quality validation

Geisler S., Vidal M-E, et al. Knowledge-driven Data Ecosystems Towards Transparency. ACM Journal Data and Information Quality. 2022

Data Ecosystems: distributed, open, and adaptive
information systems with the characteristics of being
self-organized, scalable, and sustainable.

Page 31

Network of Knowledge-driven Data Ecosystems

Geisler S., Vidal M-E, et al. Knowledge-driven Data Ecosystems Towards Transparency. ACM Journal Data and Information Quality. 2022

Declarative Mapping Languages

Page 33

Declarative Mapping Languages

RDF
triple-centric

Mapping
Language

RDF
graph-pattern
centric

GRDDL (W3C Rec 2007)

SPARQL-Generate

CSVW (W3C Rec 2015)

R2RML (W3C Rec 2012)

RML (R2RML Extension Dimou et al 2013)

Page 34

Graph-Pattern Centric Mapping Languages

The language enables the definition of mapping rules
● gather data from various data sources and transform the collected

data into instances of a graph pattern
SPARQL-Generate: implementable on top of existing SPARQL engines

Heterogeneous Data Sources

Mapping Rule
Graph
Pattern

https://www.slideshare.net/maximelefrancois86/overview-of-the-sparqlgenerate-language-and-latest-developments

Page 35

SPARQL-Generate - Graph-Pattern Centric
Mapping Language

{“DrugDescription”:
[{“DrugName”: “Vinorelbine”,
 “Bioavailability”: “43.000000”,
 “casNumber”: “71486-22-1”,
 “drugbankID”: “DB00361”},

 {“DrugName”: “Cisplatine”,
 “Bioavailability”: “100.000000”,
 “casNumber”: “15663-27-1”,
 “drugbankID”: “DB00515”},

 {“DrugName”: “Omeprazole”,
 “Bioavailability”: “35.000000”,
 “casNumber”: “73590-58-6”,
 “drugbankID”: “DB00338”},
]
}

Mapping Rule

Page 36

SPARQL-Generate - Generate Query

{“DrugDescription”:
[{“DrugName”: “Vinorelbine”,
 “Bioavailability”: “43.000000”,
 “casNumber”: “71486-22-1”,
 “drugbankID”: “DB00361”},

 {“DrugName”: “Cisplatine”,
 “Bioavailability”: “100.000000”,
 “casNumber”: “15663-27-1”,
 “drugbankID”: “DB00515”},

 {“DrugName”: “Omeprazole”,
 “Bioavailability”: “35.000000”,
 “casNumber”: “73590-58-6”,
 “drugbankID”: “DB00338”},
]
}

Page 37

SPARQL-Generate - Graph-Pattern Template

{“DrugDescription”:
[{“DrugName”: “Vinorelbine”,
 “Bioavailability”: “43.000000”,
 “casNumber”: “71486-22-1”,
 “drugbankID”: “DB00361”},

 {“DrugName”: “Cisplatine”,
 “Bioavailability”: “100.000000”,
 “casNumber”: “15663-27-1”,
 “drugbankID”: “DB00515”},

 {“DrugName”: “Omeprazole”,
 “Bioavailability”: “35.000000”,
 “casNumber”: “73590-58-6”,
 “drugbankID”: “DB00338”},
]
}

Page 38

SPARQL-Generate - Data Source

{“DrugDescription”:
[{“DrugName”: “Vinorelbine”,
 “Bioavailability”: “43.000000”,
 “casNumber”: “71486-22-1”,
 “drugbankID”: “DB00361”},

 {“DrugName”: “Cisplatine”,
 “Bioavailability”: “100.000000”,
 “casNumber”: “15663-27-1”,
 “drugbankID”: “DB00515”},

 {“DrugName”: “Omeprazole”,
 “Bioavailability”: “35.000000”,
 “casNumber”: “73590-58-6”,
 “drugbankID”: “DB00338”},
]
}

Page 39

SPARQL-Generate - Iterator for source traversal

{“DrugDescription”:
[{“DrugName”: “Vinorelbine”,
 “Bioavailability”: “43.000000”,
 “casNumber”: “71486-22-1”,
 “drugbankID”: “DB00361”},

 {“DrugName”: “Cisplatine”,
 “Bioavailability”: “100.000000”,
 “casNumber”: “15663-27-1”,
 “drugbankID”: “DB00515”},

 {“DrugName”: “Omeprazole”,
 “Bioavailability”: “35.000000”,
 “casNumber”: “73590-58-6”,
 “drugbankID”: “DB00338”},
]
}

Page 40

SPARQL-Generate - Binding functions

{“DrugDescription”:
[{“DrugName”: “Vinorelbine”,
 “Bioavailability”: “43.000000”,
 “casNumber”: “71486-22-1”,
 “drugbankID”: “DB00361”},

 {“DrugName”: “Cisplatine”,
 “Bioavailability”: “100.000000”,
 “casNumber”: “15663-27-1”,
 “drugbankID”: “DB00515”},

 {“DrugName”: “Omeprazole”,
 “Bioavailability”: “35.000000”,
 “casNumber”: “73590-58-6”,
 “drugbankID”: “DB00338”},
]
}

Page 41

RDF Triple Centric Mapping Language

{“DrugDescription”:
[{“DrugName”: “Vinorelbine”,
 “Bioavailability”: “43.000000”,
 “casNumber”: “71486-22-1”,
 “drugbankID”: “DB00361”},

 {“DrugName”: “Cisplatine”,
 “Bioavailability”: “100.000000”,
 “casNumber”: “15663-27-1”,
 “drugbankID”: “DB00515”},

 {“DrugName”: “Omeprazole”,
 “Bioavailability”: “35.000000”,
 “casNumber”: “73590-58-6”,
 “drugbankID”: “DB00338”},
]
}

Mapping Rule

Page 42

R2RML

Mapping rules (Triples maps) from
relational tables into RDF (LogicalTable)

○ a base table
○ a view
○ a valid SQL query

A Subject Map generates the subject of
RDF triples

Predicate-Object Maps assign predicate
and object to a subject

● predicate Map indicates the predicate
● object Map defines the object

https://www.w3.org/TR/r2rml/

Page 43

R2RML

RefObject Maps allows for the definition of
the values of an object as the subjects of
the RDF triples generated by another
TriplesMap

Join indicates the condition to be satisfied
to retrieve the subject values of the
referenced triples map

https://www.w3.org/TR/r2rml/

Page 44

R2RML

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338

Relational Table- Drug

Triples Map

Page 45

R2RML- Logical Table

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338

Page 46

R2RML- SubjectMap- PredicateObject Map

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338

Page 47

R2RML- Logical Table- SQL Query

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338

Page 48

DrugName Bioavailability CasNumber DrugBankID

Vinorelbine 43.000000 71486-22-1 DB00361

Cisplatine 100.000000 15663-27-1 DB00515

Omeprazole 35.000000 73590-58-6 DB00338

Drug

SSN Name Birthdate Status

551 John Smith 20.12.1978 Alive with
disease

552 Peter Lange 19.01.2010 Dead

553 Luis Perez 14.01.1959 Heatlhly

Patient

DrugID PatientID StartDate EndData

DB00361 551 20.01.2021 31.03.2021

DB00515 551 20.01.2021 31.03.2021

DB00338 551 20.01.2021 31.03.2021

Treatment

Page 49

Triples Map defining ex:Drug

Page 50

Triples Map defining ex:Patient

Page 51

Triples Map defining the ex:Prescription Relationship

Page 52

Join between Triples Maps

Page 53

R2RML Triples Maps- Abstract Description

Given DIS=<O,S,M>, mapping rules in M are defined as safe horn clauses

conjunctive query over the alphabet of the data sources S with variables in

conjunction of predicates representing classes and properties in O with variables in

subset of

Page 54

Types of Mapping Rules
Concept Mapping Assertions: a conjunctive query over the predicate symbols of data sources to
create the instances of a class C in the ontology O; f(.) is a function symbol

body(.) f(y)

C(.)

Page 55

Types of Mapping Rules
Role Mapping Assertions: a conjunctive query over the predicate symbols of data sources
to create the arguments of P(.,.) is a predicate in the ontology O f1(.) and f2(.) are function
symbols

body(.) f1(y)

f2(y)P(.,.)

Page 56

Types of Mapping Rules
Role Mapping Assertions: a conjunctive query over the predicate symbols of data sources
to create the arguments of P(.,.) is a predicate in the ontology O f1(.) and f2(.) are function
symbols

body(.) f1(y)

f2(y)

Page 57

Types of Mapping Rules

Attribute Mapping Assertions: a conjunctive query over the predicate symbols of data source to create
the arguments of an attribute A(.,.) in the ontology O; f(.) is a function symbol

body(.)

A(.,.)

f(y)

y2

Page 58

RDF Mapping Language

Mapping language defined on top of
R2RML

● Enables the collection of data from
data sources in various formats

○ XML, JSON, CSV, RDB

Page 59

R2RML versus RML
R2RML RML

Logical Table - only relational database
(rr:logicalTable)

Logical Source - CSV, XML, JSON, HTML
(rml:logicalSource)

Table Name
(rr:tableName)

URI pointing to the source
(rml:source)
it can be RDB, JSON, XML, or CSV

Relational Table Column
(rr:column)

Reference
(rml:reference)

SQL query
(rr:sqlQuery)

Reference Formulation
(rml:referenceFormulation)

● type of the source of the input data file, e.g.
CSV, JSONPath, XPath.

Iteration per row in table Defined iterator
(rml:iterator)

Page 60

Examples- Logical Data Sources

60

DrugName DrugBankID DBpediaURL UMLS CUI UMLS Label

Vinorelbine DB00361 http://dbpedia.org/resource/Vinorelbine C0078257 Vinorelbine

Nivolumab DB09035 http://dbpedia.org/resource/Nivolumab C3657270 Nivolumab

Cisplatin DB00515 http://dbpedia.org/resource/Cisplatin C0008838 Cisplatin

Omeprazole DB00338 http://dbpedia.org/resource/Omeprazole C0028978 Omeprazole

dataSource1.csv

dataSource2.csv
PatientID PatientName PrescribedDrug StartDateTreatment EndDateTreatment Doses

5553 John Smith Vinorelbine 02.12.2020 02.02.2021 3mg

5553 John Smith Cisplatin 02.12.2020 02.02.2021 4mg

5554 Markus Hass Omeprazole 04.10.2020 02.12.2020 250mg

5554 Markus Hass Nivolumab 04.10.2020 02.12.2020 4mg

Page 61

Example- RML Mapping
Rules
to define class Drug

61

Page 62

Example- RML
Mapping Rules
to define class Patient

62

Page 63

63

Page 64

Example- RML Triple Map over an RDB Logical Source

rml:logicalSource

rr:subjectMap

rr:predicateObjectMap

Definition of the access
to the database

Page 65

Tracing DIS using Declarative Mapping Rules

Classes’ Definition

SELECT DISTINCT ?class ?typeDefinition ?source WHERE
 {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
 ?triplesmap <http://semweb.mmlab.be/ns/rml#logicalSource> ?o .
 ?o ?typeDefinition ?source .
 ?triplesmap <http://www.w3.org/ns/r2rml#subjectMap> ?o2 .
 ?o2 <http://www.w3.org/ns/r2rml#class> ?class . }

Predicates’ Definition

SELECT DISTINCT ?class ?property ?definition ?objectValue WHERE
 {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
 ?triplesmap <http://semweb.mmlab.be/ns/rml#logicalSource> ?o .
 ?o ?typeDefinition ?source .
 ?triplesmap <http://www.w3.org/ns/r2rml#subjectMap> ?o2 .
 ?o2 <http://www.w3.org/ns/r2rml#class> ?class .
 ?triplesmap <http://www.w3.org/ns/r2rml#predicateObjectMap> ?o4 .
 ?o4 <http://www.w3.org/ns/r2rml#predicate> ?property.
 ?o4 <http://www.w3.org/ns/r2rml#objectMap> ?o6 .
 ?o6 ?definition ?objectValue }

Number Mappings Per Class

SELECT ?class count(DISTINCT ?triplesmap) as ?numberMappings WHERE
 {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
 ?triplesmap <http://semweb.mmlab.be/ns/rml#logicalSource> ?o .
 ?o ?typeDefinition ?source .
 ?triplesmap <http://www.w3.org/ns/r2rml#subjectMap> ?o2 .
 ?o2 <http://www.w3.org/ns/r2rml#class> ?class . }

GROUP BY ?class ORDER BY DESC(?numberMappings)

Classes used in Mapping Rules but not in
Ontology

SELECT DISTINCT ?class WHERE
 {?triplesmap a <http://www.w3.org/ns/r2rml#TriplesMap> .
 ?triplesmap <http://semweb.mmlab.be/ns/rml#logicalSource> ?o .
 ?o ?typeDefinition ?source .
 ?triplesmap <http://www.w3.org/ns/r2rml#subjectMap> ?o2 .
 ?o2 <http://www.w3.org/ns/r2rml#class> ?class .
 FILTER (!EXISTS { ?class a owl:Class })}

http://www.w3.org/ns/r2rml#class

Page 66

BENEFITS OF A DECLARATIVE KG CREATION

04.12.20
20 66

DIS

Mapping Rules

Patient

Ontology

Evaluating R2RML and RML Mapping Rules

Page 68

Various Parameters Impact Execution Time

Number of POMs (PropertyObjectMap) Join Selectivity Percentage of Duplicates

Type of Joins Data Partition

Engines are not equality impacted
by DIS configurations

David Chaves-Fraga, Kemele M. Endris, Enrique Iglesias, Óscar Corcho, Maria-Esther Vidal: What Are the Parameters that Affect the Construction of a Knowledge Graph? ODBASE 2019

Page 69

RML Operators

Simple Object Map (SOM)
evaluates predicate object
map in triples maps

Object Reference Map (ORM)
implements a reference
between two triples maps

Object Join Map (OJM)
implements a join condition
between two triples maps

Enrique Iglesias, Samaneh Jozashoori, David Chaves-Fraga, Diego Collarana, Maria-Esther Vidal. SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. ACM CIKM 2020.

https://www.tib.eu/en/research-development/scientific-data-management/staff/samaneh-jozashoori/

Page 70

Logical Operators in Triples Maps

Object Reference Map (ORM): Given two sources S1 and S2, a property p, and
attributes A and B from S1 and S2, respectively. ORM(S1,S2,p,A,B) generates RDF
triples (a,p,b) by projecting the attributes A and B from the natural join of S1 and S2.

Page 71

DECLARATIVE KNOWLEDGE
GRAPH CREATION

Physical Data Structures avoid the
generation of duplicated triples

● Predicate Tuple Table (PTT):
for each predicate p, stores all
the triples generated so far

● Predicate Join Table (PJTT):
stores the subjects of the
triples generated by a join.

SDM-RDFizer implements three
physical operators:
• Simple Object Map (SOM)
• Object Reference Map (ORM)
• Object Join Map (OJM)

Iglesias et al. SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. ACM CIKM 2020.
Jozashoori et al. FunMap: Efficient Execution of Functional Mappings for Scaled-Up Knowledge Graph Creation. ISWC 2020

Page 72

Predicate Tuple Table (PTT)

<http://example.org/Gene/PHF12_ET00000268756> <ex:geneLabel>
“PHF12_ET00000268756”.

<http://example.org/Gene/ALDH3A1_ET00000395555> <ex:geneLabel>
“ALDH3A1_ET00000395555”.

<TriplesMap1>
 rml:logicalSource [rml:source "dataSource1"];
 rr:subjectMap [
 rr:template "http://example.org/Gene/{Gene Name}";
 rr:class ex:Gene];
 rr:predicateObjectMap [
 rr:predicate ex:geneLabel;
 rr:objectMap [rml:reference "Gene Name"]];

Predicate Tuple Table (PTT)
● stores RDF triples for each predicate

generated so far
● Key encoding subject and object

PTT ex:geneLabel

Key

encode(http://example.org/Gene/PHF12_ET00000268756,
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET00000395555,
ALDH3A1_ET00000395555)

Page 73

Predicate Join Tuple Table (PJTT)

Predicate Join Tuple Table (PJTT)
● stores values generated during execution of a join

condition between two RML triple maps.
Index Hash table to the Source S2 of the parentTM:

● Key encoding of each of value(s) of the attributes
in the join condition

● Value set with the subject values in S2 associated
with the values of the attributes in the hash key

<TriplesMap2>
 rml:logicalSource [rml:source "dataSource1"];
 rr:subjectMap [
 rr:template
"http://example.org/Sample/{ID_sample}";
 rr:class ex:Sample] ;
 rr:predicateObjectMap [
 rr:predicate ex:sample_isTakenFrom_tumor;
 rr:objectMap [
 rr:parentTriplesMap <TriplesMap3>;
 rr:joinCondition [rr:child "ID_sample";

 rr:parent "ID_sample" ;];].

 <TriplesMap3>
 rml:logicalSource [rml:source "dataSource2"];
 rr:subjectMap [
 rr:template "http://example.org/Tumor/{ID_tumor}";
 rr:class ex:Tumor] .

Object Join Map (OJM)

U
tilized by the R

M
L operators

Page 74

Predicate Join Tuple Table (PJTT)

<TriplesMap2>
 rml:logicalSource [rml:source "dataSource1"];
 rr:subjectMap [
 rr:template
"http://example.org/Sample/{ID_sample}";
 rr:class ex:Sample] ;
 rr:predicateObjectMap [
 rr:predicate ex:sample_isTakenFrom_tumor;
 rr:objectMap [
 rr:parentTriplesMap <TriplesMap3>;
 rr:joinCondition [rr:child "ID_sample";

 rr:parent "ID_sample" ;];].

 <TriplesMap3>
 rml:logicalSource [rml:source "dataSource2"];
 rr:subjectMap [
 rr:template "http://example.org/Tumor/{ID_tumor}";
 rr:class ex:Tumor] .

ID_sample ID_tumor

2193351 1455465

2193351 2064548

2196270 2061629

Gene Name ID_sample

ALDH3A1_ET00000395555 2193351

PHF12_ET00000268756 2193351

PHF12_ET00000268756 2196270

dataSource1 dataSource2

Page 75

Predicate Join Tuple Table (PJTT)

<TriplesMap2>
 rml:logicalSource [rml:source "dataSource1"];
 rr:subjectMap [
 rr:template
"http://example.org/Sample/{ID_sample}";
 rr:class ex:Sample] ;
 rr:predicateObjectMap [
 rr:predicate ex:sample_isTakenFrom_tumor;
 rr:objectMap [
 rr:parentTriplesMap <TriplesMap3>;
 rr:joinCondition [rr:child "ID_sample";

 rr:parent "ID_sample" ;];].

 <TriplesMap3>
 rml:logicalSource [rml:source "dataSource2"];
 rr:subjectMap [
 rr:template "http://example.org/Tumor/{ID_tumor}";
 rr:class ex:Tumor] .

ID_sample ID_tumor

2193351 1455465

2193351 2064548

2196270 2061629

dataSource2

JPTT TripleMap2_ID_sample

TripleMap2_ID_sample

[2193351] [1455465,2064548]

[2196270] [2061629]

Page 76

Dictionary Table

Key

encode(http://example.org/Gene/PHF12_ET00000268756_
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET0000039555
5_ALDH3A1_ET00000395555)

Dictionary Table
● Encodes each RDF resource

with an identification number
Hash table:

● Key RDF resource
● Value identification number in

base 36

Key Value

http://example.org/Gene/PHF12_ET00000268756 1

ex:geneLabel 2

“PHF12_ET00000268756” 3

http://example.org/Gene/ALDH3A1_ET00000395555 4

“ALDH3A1_ET00000395555” 5

PTT ex:geneLabel

Dictionary Table

Page 77

Dictionary Table

Key

encode(http://example.org/Gene/PHF12_ET00000268756_
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET0000039555
5_ALDH3A1_ET00000395555)

Dictionary Table
● Encodes each RDF resource

with an identification number
Hash table:

● Key RDF resource
● Value identification number in

base 36

Key Value

http://example.org/Gene/PHF12_ET00000268756 1

ex:geneLabel 2

“PHF12_ET00000268756” 3

http://example.org/Gene/ALDH3A1_ET00000395555 4

“ALDH3A1_ET00000395555” 5

PTT ex:geneLabel

Dictionary Table

Key

1_3

4_5

PTT 2

Page 78

Physical Operators
Simple Object Map (SOM):
Triples Map tm1 defines predicate p on logical source S
and tm1 subjectMap is f1(att1)
and tm1 objectMap for p is f2(att2)

For each row in S
a. Create an RDF triple t=(f1(row.att1),p,f2(row.att1))
b. If encode(f1(row.att1),f2(row.att1)) does not belong to the PPT for p

i. Add encode(f1(row.att1),f2(row.att1)) to PPT for p
ii. Output (f1(row.att1),p,f2(row.att1)) to the KG

<http://example.org/Gene/ALDH3A1_ET00000395599> <ex:geneLabel>
“ALDH3A1_ET00000395599”.

Key

encode(http://example.org/Gene/PHF12_ET00000268756,
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET00000395555,
ALDH3A1_ET00000395555)

Key

encode(http://example.org/Gene/PHF12_ET00000268756,
PHF12_ET00000268756)

encode(http://example.org/Gene/ALDH3A1_ET00000395555,
ALDH3A1_ET00000395555)

encode(http://example.org/Gene/ALDH3A1_ET00000395599,
ALDH3A1_ET00000395599)

Page 79

Physical Operators

Object Reference Map (ORM):
Triples Map tm1 refers to Triples Map tm2 to define predicate p on logical source S:
and subject of tm1 is defined as f1(att1)
and subject of tm2 is defined as f2(att2)

For each row in S
a. Create an RDF triple t=(f1(row.att1),p,f2(row.att1))
b. If encode(f1(row.att1),f2(row.att1)) does not belong to the PPT for p

i. Add encode(f1(row.att1),f2(row.att1)) to PPT for p
ii. Output (f1(row.att1),p,f2(row.att1)) to the KG

<http://example.org/Mutation/A289VExon7> <ex:isMutation> <http://example.org/Gene/EGFR>

Key

encode(http://example.org/Mutation/A127delExon3,
http://example.org/Gene/EGFR)

Key

encode(http://example.org/Mutation/A127delExon3,
http://example.org/Gene/EGFR)

encode(http://example.org/Mutation/A289VExon7,
http://example.org/Gene/EGFR)

Page 80

Physical Operators- OJM

ID_sample ID_tumor

2193351 1455465

2193351 2064548

2196270 2061629

Gene Name ID_sample

ALDH3A1_ET00000395555 2193351

PHF12_ET00000268756 2193351

PHF12_ET00000268756 2196270

da
ta

S
ou

rc
e1

da
ta

S
ou

rc
e2

JP
TT TripleM

ap2_ID
_sam

ple
TripleMap2_ID_sample

[2193351] [1455465,2064548]

[2196270] [2061629]

 For each row1 in dataSource1
If there is an entry in the attributes of the join condition

Then extract the values associated with the entry and generate the
corresponding entries in PPT

Key

encode(http://example.org/Sample/2193351,http://example.org/Tumor/1455465)

encode(http://example.org/Sample/2193351,http://example.org/Tumor/2064548)

encode(http://example.org/Sample/2196270,http://example.org/Tumor/2061629)

Page 81

Empirical Evaluation

04.12.20
20 81

Data Sources:
COSMIC: Coding point mutation
dataset. Raws were randomdly selected
Number of Rows: 10k, 100k, and 1M.
Duplicate Rates: 25%
Operators per Mappings: SOM (1-4),
ORM (2-5), and OJM (2-5)

RML Engines:
SDM-RDFizer v3.2
RMLMapper v4.7
RocketRML v1.7.0
SDM-RDFizer- naive RML operators

Execution time: Elapsed time in RDF
KG creation (reported by the time
command of the Linux operating system)
Timeout: Five hours

Page 82

Empirical Evaluation

10K Rows 100K Rows

 RocketRML v1.7.0 and RMLMapper v4.7 timed out (2ORM, 5ORM, 2OJM, and 5OJM)
 RMLMapper v4.7 failed executing 2 OJM and 5OJM
 SDM-RDFizer physical operators speed up knowledge graph

Similar performance is observed in testbeds with different duplication rates and size

1M Rows

Page 83

How about planning the mapping rules?

Page 84

How about planning the mapping rules?

Page 85

How about planning the mapping rules?

Page 86

Impact of Planning the Execution of Mapping Rules

Page 87

Options of Planning the Partitions of Mapping Rules

Page 88

Iglesias, Jozashoori, Vidal, Scaling Up Knowledge Graph Creation to Large and Heterogeneous Data Sources. https://arxiv.org/abs/2201.09694

Page 89

Page 90

Empirical Evaluation
Benchmarks:
SDM-COSMIC* created by randomly selecting genomic mutation data in the COSMIC
database**.

● Eight different logical data sources with various sizes including 10k, 100k, 1M,
and 10M rows.

● Duplicate rates: 25% or 75%.
● Mapping assertion (MA) configurations:

○ Conf7: Four MAs (defining the same predicates) with four concepts and two
multisource role MAs.

○ Conf8: Six MAs with six concepts and five multi-source role MAs. Five
child MAs are referring to the same parent MA.

○ Conf9: Eight MAs with eight concepts and seven multi-source role MAs.
Engines:

● RMLMapper v4.12, Morph-KGC v1.4.1, SDM-RDFizer v3.6

Metrics:
● Execution Time

* https://figshare.com/articles/dataset/SDM-Genomic-Datasets/14838342/1
** https://cancer.sanger.ac.uk/cosmic

Page 91

Impact of Planning Mapping Rules - Different Configurations

Page 92

Impact of Planning Mapping Rules - Different Configurations

Planning the execution of mapping rules:
● plays a crucial role in the KG creation process
● consumes time, in simple cases, it may generate overhead

and negatively impact an engine behavior

Integrity Constraint Validation

Page 94

SHACL Language
The SHApes Constraint Language (SHACL):
• W3C recommendation language for the declarative specification of integrity constraints

over RDF KGs.
A SHACL shape:
• represents a set of constraints that apply over the same entities.
• can refer to another shape, two represent constraints between entities of two types.

SHACL Shapes

Targets Rules
Constraints

Target Classes Target Nodes

Target
ObjectsOf

Target
SubjectsOf

Cardinality Value Type

Property Paths
String

Constraints

Node Shape

Property Shape

Page 95

SHACL Fragments

■
Validating an RDF graph against SHACL constraints is
NP-hard in the size of the graph [Corman et al. 2018]
Tractable fragments of SHACL
 only enables non-recursive shapes

 does not allow negations through recursive shapes

 does not allow negations but disjunction.

These fragments can be computed in polynomial time in the
size of the result of the data required to validate the constraints

Page 96

SHACL Example

The entities of class LCPatient:
• have exactly one name
• cannot have a treatment

that includes Nivolumab
and Vinorelbine

@prefix ex: <http://www.example.com/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .

ex:LCPatientShape rdf:type sh:NodeShape ;
 sh:targetClass ex:LCPatient;
 sh:property [
 sh:path iasis:name ;
 sh:minCount 1;
 sh:maxCount 1 ;];
 sh:or [
 sh:not [sh:property
 [sh:path ex:hasTreatment ;
 sh:hasValue ex:Vinorlbine];];
 sh:not [sh:property
 [sh:path ex:hasTreatment ;
 sh:hasValue ex:Nivolumab ;];];].

Page 97

Transparency in Knowledge-driven Data Ecosystems-Example

Lung Cancer Protocols:

Afatinib is a second generation Tyrosine Kinase
Inhibitors (TKI) not recommended for non-small
cell lung cancer patients with Epidermal Growth
Factor Receptor (EGFR) mutation negative.

Lapatinib is a dual Tyrosine Kinase Inhibitors
(TKI) for non-small cell lung cancer patients
with HER2 mutation positive or EGFR positive.

ex:NSLCProtocol1
a sh:NodeShape ;
sh:targetClass ex:NSLC-EGFR-negative ;
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Afatinib;
sh:maxCount 0]

ex:NSLCProtocol2
a sh:NodeShape ;
sh:targetClass ex:NSLC-HER2-OR-EGFR-positive
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Lapatinib;
sh:minCount 1]

Page 98

The data contains information about universities.
Each university has to have one name.
Professors are also present in the data. Each of
them has exactly one name and at least one
email address. Professors have at least one
doctoral degree from a university. The knowledge
graph also covers the departments of a
university; they have exactly one name and are a
sub-organization of a university. Professors work
for at least one department. The university
system also holds information about the courses
taught. Each course has one name. Professors
teach at least one course.

Motivating Example (1/2)

=1 name =1 name

=1 name

=1 name
=1 subOrganizationOf

≥1 worksFor

≥1 teacherOf

Graphical Representation of a SHACL Network

An RDF KG of
a University System

≥1 email
SHACL represents intra- and inter-shape ICs on RDF KGs

≥1
docto

ralDegreeFrom

Professor Department

Course

University

Page 99

Impact of Shape Traversal on Validation Time

Professor

Course

Department

University

Department

University

Professor

Course

University

Department

Course

Professor

Random Traversal Sophisticated TraversalFollowing Links

Data needs to be loaded;
Professors validated in the end

Validation Time:
8379 ms

Validation Time:
6672 ms

Validation Time:
525 ms

Opportunity to save by following
links; Profs and Depts validated
after the next shape

Use knowledge from
previous validations;
improved performance

KNOWLEDGE

EXPLOITATION

Knowledge Graph
~1 million triples

SHACL Network

Class #entities #valid
University 1000 8

Department 149 149

Professor 1267 7

Course 8126 8126

SHACL validation time depends on:
● size of KG and SHACL network
● KG quality
● SHACL network traversal order

Page 100

● SHACL validator over SPARQL endpoints
● Assumes RDF graph to validate is free of blank nodes
● SHACL shapes are translated into stratified Datalog rules
● Efficient validation of knowledge graphs

○ Interleaved execution

○ Query rewriting

○ Planning of traversal order

● Continuous generation of results
● Only JSON input so far instead of the standard

● SHACL fragments express recursive networks without negation

Trav-SHACL

Page 101

SPARQL
queries

 Endpoint

Validate S’ such that:Find:

[[TARG’(s)]]𝒢

[[𝛄’(DEF(s))]]𝒢

OUTPUTINPUT

5

Trav-SHACL: Validating Integrity Constraints

Page 102

Trav-SHACL: Validating Integrity Constraints

Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Trav-SHACL: Efficiently Validating Networks of SHACL Constraints,
 The Web Conference (WWW 2021). https://doi.org/10.1145/3442381.3449877

Trav-SHACL ...
● plans the traversal order
● interleaves the validation steps
● rewrites queries to make them more selective

https://github.com/SDM-TIB/Trav-SHACL

Page 103

Trav-SHACL: Experimental Results

Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Trav-SHACL: Efficiently Validating Networks of SHACL Constraints,
 The Web Conference (WWW 2021). https://doi.org/10.1145/3442381.3449877

● # Constraint query mappings:
○ 703K in SHACL2SPARQL,
○ 814 in Trav-SHACL.

● # Constraint query mappings:
○ 22.94M in SHACL2SPARQL,
○ 6.19M in Trav-SHACL.

● Trav-SHACL always delivers results continuously,
● generates the first answer faster,
● finishes the execution faster,
● scales up to large knowledge graphs.

dief@t: continuous
efficiency at time t
(TFFF)^-1: Time for
First Answer (sec)
(ET)^-1: Execution
Time (sec)
Comp: sum of
(in)validated entities
T: Throughput
(answer/sec)

Schema 3 LKGsSchema 1 MKGsSchema 2 SKGs

Metrics

● # Constraint query mappings:
○ 839K in SHACL2SPARQL,
○ 468K in Trav-SHACL.

Impact of the interleaved execution

Page 104

Continuous Behavior

Small KG Medium KG Large KG

High Quality

Low Quality

Steadier
Answer
Generation

Prominent Difference
Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Trav-SHACL: Efficiently Validating Networks of SHACL Constraints,

 The Web Conference (WWW 2021). https://doi.org/10.1145/3442381.3449877

Pipeline for Knoowledge Graph Creation

Page 106

The SDM Knowledge Graph Creation Pipeline

Page 107

Knowledge Graph Creation Pipeline

Tool Main Features
FALCON [Sakor et al. 2019,2020] • Links surface forms in a short text into entities in Knowledge Graphs (KGs)

• Guided by rules of English morphology, and tokenization and compounding Resorts to
alignments among entities, their labels, and definition in existing KGs (e.g., DBpedia,
Wikidata, and UMLS) for disambiguation

SDM-RDFizer [Iglesias et al.
2020,Jozashoori et al. 2020]

• RML compliant engine to create KGs
• Implements RML mapping rules with a set of non-blocking operators

EABlock Functions
[Jozashoori et al. 2022]

• Toolbox of functions for Entity Alignment to be included in RML mapping rules
• Functions perform named entity recognition over short text and entity linking to

DBpedia, Wikidata, and UMLS
Trav-SHACL
 [Figuera, Rohde, Vidal 2021]

• W3C recommendation language for specifying integrity constraints over RDF KGs
• A SHACL engine to validate constraints over KGs
• Implements non-blocking validation strategies

Page 108

Demo and Video

https://service.tib.eu/ldmservice/dataset/sdmkgcPrepared by Akhilesh Vyas

https://service.tib.eu/ldmservice/dataset/sdmkgc

Page 109

BioFalcon

● Entity & Relation linking to UMLS
● Hybrid approach

○ Linguistic rules
○ Semantic type prediction model

● Receive input text from the user
● Extract & link the extracted entities to UMLS
● Available as an online API
 https://github.com/SDM-TIB/falcon2.0

 Demo: https://labs.tib.eu/sdm/biofalcon/
 https://service.tib.eu/ldmservice/service/falcon-demo

Ahmad Sakor, Isaiah Onando Mulang', Kuldeep Singh, Saeedeh Shekarpour, Maria-Esther Vidal, Jens
Lehmann, Sören Auer. Old is Gold: Linguistic Driven Approach for Entity and Relation Linking of Short
Text. NAACL 2019
Ahmad Sakor, Kuldeep Singh, Anery Patel, Maria-Esther Vidal. Falcon 2.0: An Entity and Relation Linking
Tool over Wikidata. CIKM 2020

https://github.com/SDM-TIB/falcon2.0
https://labs.tib.eu/sdm/biofalcon/
https://service.tib.eu/ldmservice/service/falcon-demo

Page 110

BioFalcon https://labs.tib.eu/sdm/biofalcon/

https://labs.tib.eu/sdm/biofalcon/

SDM Knowledge Graph
Creation Pipeline

Samaneh Jozashoori,
Ahmad Sakor,

Enrique Iglesias

Page 112

easyRML

 https://github.com/SDM-TIB/easyRML

 Demo: https://tib.eu/cloud/s/rFYL3CZHqYSQjFC

● Facilitates the RML Mapping rule generation
● Receives mappings data from the user via a user interface and translate it

into a validated turtle file including RML mapping rules
● Omits the overhead of syntax verification and errors from the user side

https://github.com/SDM-TIB/easyRML
https://tib.eu/cloud/s/rFYL3CZHqYSQjFC

Page 113

Dragoman

 https://github.com/SDM-TIB/Dragoman

 Demo: https://tib.eu/cloud/s/ikjiHyf8RNrEHSY

● An Optimized, RML-engine-agnostic Interpreter for Functional Mappings
● Plans the optimized execution of FnO functions integrated in RML mapping rules
● Interprets and transforms mappings into function-free rules that can be translated into

RDF using any RML-compliant engine

★ Users can easily add their own scripts defining new functions
★ It can be adopted by any RML-compliant knowledge graph creation pipeline
★ Able to interpret composite functions
★ Able to interpret the list of outputs (which is the limitation of current RML language)
★ Is efficient (using optimization techniques) in terms of execution time

Samaneh Jozashoori, David Chaves-Fraga, Enrique Iglesias, Maria-Esther Vidal and Oscar Corcho. FunMap:
Efficient Execution of Functional Mappings for Scaled-Up Knowledge Graph Creation. ISWC 2020

https://github.com/SDM-TIB/Dragoman
https://tib.eu/cloud/s/ikjiHyf8RNrEHSY

Page 114

SDM-RDFizer

 https://github.com/SDM-TIB/SDM-RDFizer

 Demo: https://www.youtube.com/watch?v=DpH_57M1uOE

Enrique Iglesias, Samaneh Jozashoori, David Chaves-Fraga, Diego Collarana, Maria-Esther Vidal.
SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. ACM CIKM 2020.

https://github.com/SDM-TIB/SDM-RDFizer
https://www.youtube.com/watch?v=DpH_57M1uOE
https://www.tib.eu/en/research-development/scientific-data-management/staff/samaneh-jozashoori/

Page 115

● Understand the process of knowledge graph creation
● Understand the entity linking and knowledge extraction

processes
● Define and execute simple mapping rules
● Define and execute mapping rules with functions such as

entity linking functions
● Create a knowledge graph

Hands-on Goals

Page 116

The SDM Knowledge Graph Creation Pipeline
(Docker Install)

For Linux:
> sudo curl -L "https://github.com/docker/compose/releases/download/1.22.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

> sudo chmod +x /usr/local/bin/docker-compose
> docker-compose --version
More Info:

https://docs.docker.com/compose/install/
For Windows :

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
More Info:

https://docs.docker.com/docker-for-windows/install/
For Mac :

https://download.docker.com/mac/stable/Docker.dmg
More Info:

https://docs.docker.com/docker-for-mac/install/

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/mac/stable/Docker.dmg

Page 117

The SDM Knowledge Graph Creation Pipeline

 or download the tutorial from here, and unzip the file to a folder (KGC_Workshop_2021):
https://github.com/SDM-TIB/KGC_Workshop_2021/archive/master.zip

here you should see the three containers running

> mkdir kgc_2021_tutorial
> cd kgc_2021_tutorial/
> git clone https://github.com/SDM-TIB/KGC_Workshop_2021.git

> cd KGC_Workshop_2021
> docker network create kgc_2021
> docker-compose up -d
> docker ps

https://github.com/SDM-TIB/KGC_Workshop_2021.git

Page 118

Example- A Unified Schema

Page 119

Example- A Unified Schema

Page 120

Task 1: Create knowledge mappings in RML using easyRML

Assignments- Defining New Knowledge Mappings

Page 121

Task 1: Understanding and creating knowledge mappings

I. Open this URL in your browser http://localhost:5000 and create the
mapping file

 Demo: https://tib.eu/cloud/s/rFYL3CZHqYSQjFC

II. You can use the ontology and data file available at data folder
III. Provide the output path in easyRML interface e.g.

/easyRML/sources/

IV. Check the generated mapping file:

Assignments- Defining New Knowledge Mappings

> cd /easyrml
> ls -l
> less given_name_to_the_mapping_file.ttl

http://localhost:5000
https://tib.eu/cloud/s/rFYL3CZHqYSQjFC

Page 122

Assignments- Entity Linking Integrated in the Knowledge Mapping

Disorder Drug

Drug_Disorder

interactor1 interactor2

Drug_Disorder_Dataset

Drug Disorder

C0995188 C0948380

C0034266 C0376358

Disord
er

Metastatic_Colorectal_cancer

rdf:type
Cetuxima

b

DB00002

Drug

rdf:type
sdmkgc:drugLabel

How you want to model
this data and integrate into

your KG!!

What you
already
have in

your KG!

Page 123

Task 2: Execute an entity linking as pre-processing
a) Analyze Entities to be Linked

b) Execute the Falcon entity linking component

c) Analyze the Outcomes of the entity linking process

Assignments- Entity Linking as pre-processing

> cd data
> ls -l
> less drugs.csv
> cd ..

> docker exec -it kgc_workshop_2021 python3 /tutorial/src/drugs_umls_link.py

> cd data
> ls -l
> less drugs.csv
> cd ..

Page 124

Task 3: Execute knowledge mappings in which the entity linking is
integrated as functions
I. Analyze the data you want to integrate into the KG

II. Apply Dragoman to execute functions in knowledge mappings and
transforms the data integration into function-free knowledge
mappings (first analyze the required config file and then execute)

III. Analyze the outcome of Dragoman

Assignments- Entity Linking Integrated in the Knowledge Mapping

> cd data
> ls -l
> less drug_disorder.csv
> cd ..

> less configs/config-Dragoman.ini
> docker exec -it kgc_2021_dragoman python3 /app/run_translator.py
/app/configs/config-Dragoman.ini

> cd dragoman
> ls -l
> less drug_disorder_transferred_mapping.ttl
> cd ../..

Page 125

Task 4: Execute knowledge mappings in which the entity linking is
integrated as functions
I. Apply SDM-RDFizer to execute generate rdf triples (KG) (first

analyze the required config file and then execute)

II. Explore the RDF files that composed the knowledge graph

Assignments- Generate KG based on defined knowledge mappings

> cd rdf/output/rdf
> ls -l
> less drug_disorder.nt
> cd ../..

> less configs/config-SDM-RDFizer.ini
> docker exec -it kgc_2021_semantic_enrichment python3
/app/rdfizer/run_rdfizer.py /app/configs/config-SDM-RDFizer.ini

Page 126

Task 6: Creating a Knowledge Graph in GraphDB

Assignments- Uploading The KG into GraphDB

http://localhost:7200/

Page 127

Task 6: Creating a Knowledge Graph in GraphDB

Assignments- Uploading The KG into GraphDB

Page 128

Task 6: Creating a Knowledge Graph in GraphDB

Assignments- Uploading The KG into GraphDB

Validation of Knowledge Graphs
Philipp D. Rohde,

Julian Gercke

Page 130

Requirements

● Docker
https://docs.docker.com/get-docker/

● docker-compose
https://docs.docker.com/compose/install/

https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/

Page 131

1. Clone the repository
git clone https://github.com/SDM-TIB/KGV_Workshop_2021.git

2. Start the containers
cd KGV_Workshop_2021
docker-compose up -d

3. Wait for the containers to start
You can check the status of the endpoint by visiting
http://localhost:15000/sparql

Getting Started

http://localhost:15000/sparql

Page 132

University Data

● LUBM benchmark
● One University
● 14 Classes, e.g.,

○ Full/Assistant/Associate Professors
○ (Under-)Graduate Students
○ (Graduate) Courses
○ Departments
○ Publications

Page 133

Task 1: Create Constraints

1. Go to the directory ‘shapes/lubm’
2. Open the file ‘University.json’
3. Add the following constraint:

a. Universities have at most one name
4. Open the file ‘FullProfessor.json’
5. Correct the target query
6. Add the following constraints:

a. Full professors are teacher of at least one course (shape Course)
b. Full professors have exactly one name
c. Full professors have at least one email address (ub:emailAddress)

Page 134

Task 1: Create Constraints (Cont.)

7. Open the file ‘Department.json’
8. Add the following constraints

a. Departments are a sub-organization of exactly one
University (shape University)

b. Departments have exactly one name
9. Open the file ‘Publication.json’

10. Add the following constraint
a. A publication does not have an undergraduate student as author

Page 135

Task 2: Knowledge Graph Validation

1. Go to http://localhost:5001/validate

2. Enter the required details
a. URL of the knowledge graph
b. Path with the shapes

3. Validate the knowledge graph

4. Examine the result

http://localhost:5001/validate

Future Directions

Page 137

Transparency in Knowledge-driven Data Ecosystems-Example

Lung Cancer Protocols:

Afatinib is a second generation Tyrosine Kinase Inhibitors (TKI) not recommended for
non-small cell lung cancer patients with Epidermal Growth Factor Receptor (EGFR)
mutation negative.

Lapatinib is a dual Tyrosine Kinase Inhibitors (TKI) for non-small cell lung cancer patients
with HER2 mutation positive or EGFR positive.

ex:patient1 rdf:type ex:NSCLG-EGFR-negative .
ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive .
ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib .

Instances of a knowledge graph:

Page 138

Querying Declarative Mapping Rules

SPARQL Query to Retrieve RML Mapping Rules
defining the classes ex:NSCLG-EGFR-negative
and ex:NSCLG-HER2-OR-EGFR-positive

Page 139

Validating Integrity Constraints

ex:NSLCProtocol1
a sh:NodeShape ;
sh:targetClass ex:NSLC-EGFR-negative ;
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Afatinib;
sh:maxCount 0]

ex:patient1 rdf:type ex:NSCLG-EGFR-negative .
ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive .
ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib .

Evaluation of SHACL shapes enable the validation of the protocols

ex:NSLCProtocol2
a sh:NodeShape ;
sh:targetClass ex:NSLC-HER2-OR-EGFR-positive ;
sh:property [

sh:path ex:hasOncologicalTreatment ;
sh:hasValue dbpedia:Lapatinib;
sh:minCount 1]

Instances of a knowledge graph:

But…. the evaluation of SHACL shapes (or any other language) does not allow
tracing and explaining the invalidation of the constraints.

Page 140

Provenance Meta-data to Enhance Transparency

<<ex:patient1 rdf:type ex:NSCLG-EGFR-negative>>
 prov:wasGeneratedBy ex:triplesMap1;
 prov:generaredAtTime "2021-09-08T08:20:00+06:00"^^xsd:dateTimeStamp;
 kde-prov:subjectRawValue "John Smith".

<<ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive>>
 prov:wasGeneratedBy ex:triplesMap2;
 prov:generaredAtTime "2021-09-08T08:20:00+07:00"^^xsd:dateTimeStamp;
 kde-prov:subjectRawValue "John Smith".

<<ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib>>
 prov:wasGeneratedBy ex:triplesMap3;
 prov:generaredAtTime "2021-09-08T08:20:00+08:00"^^xsd:dateTimeStamp;
 kde-prov:subjectRawValue "John Smith";
 kde-prov:objectRawValue "atinib".

<<subject property object>>
 prov:wasGeneratedBy triplesMap;
 prov:generaredAtTime time-stamp;
 kde-prov:subjectRawValue subjectValue;
 kde-prov:objectRawValue objectValue.

RDF-star (or Property) graphs to describe how RDF triples have been computed

Page 141

Transparency in Knowledge-driven Data Ecosystems

<<ex:patient1 rdf:type ex:NSCLG-EGFR-negative>>
 prov:wasGeneratedBy ex:triplesMap1;
 prov:generaredAtTime "2021-09-08T08:20:00+06:00"^^xsd:dateTimeStamp;
 kde-prov:subjectRawValue "John Smith".
<<ex:patient1 rdf:type ex:NSCLG-HER2-OR-EGFR-positive>>
 prov:wasGeneratedBy ex:triplesMap2;
 prov:generaredAtTime "2021-09-08T08:20:00+07:00"^^xsd:dateTimeStamp;
 kde-prov:subjectRawValue "John Smith".
<<ex:patient1 ex:hasOncologicalTreatment dbpedia:Afatinib>>
 prov:wasGeneratedBy ex:triplesMap3;
 prov:generaredAtTime "2021-09-08T08:20:00+08:00"^^xsd:dateTimeStamp;
 kde-prov:subjectRawValue "John Smith";
 kde-prov:objectRawValue "atinib".

KDE=<O,S,M,IC>
 O: Ontology
 S: Data Sources
 M: RLM + FnO Mappings
 IC: SHACL shapes

Traceable Knowledge Graph

Page 142

Classes in Traceable Knowledge Graphs

Powered by

Page 143

Queries against Traceable Knowledge Graphs
PREFIX ex: <http://example.com/>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX kde-prov: <http://kde.org/prov#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX rr: <http://www.w3.org/ns/r2rml#>
PREFIX rml: <http://semweb.mmlab.be/ns/rml#>
SELECT distinct ?p ?tm1 ?subjectValue1 ?objectValue2 ?logicalSource1 ?subject1 ?predicate1 ?objectMap1 ?tm2
WHERE {
 <<?p ex:hasOncologicalTreatment dbpedia:Afatinib>> prov:wasGeneratedBy ?tm1;
 kde-prov:subjectRawValue ?subjectValue1;
 kde-prov:ojectRawValue ?objectValue2.

 <<?p rdf:type ex:NSCLG-EGFR-negative>> prov:wasGeneratedBy ?tm2; kde-prov:subjectRawValue ?subjectValue1.

 ?tm1 rml:logicalSource ?logical1.
 ?logical1 rml:source ?logicalSource1.
 ?tm1 rr:subjectMap ?subject1.
 OPTIONAL { ?tm1 rr:predicateObjectMap ?pObjectMap .
 ?pObjectMap rr:predicate ?predicate1 .
 ?pObjectMap rr:objectMap ?objectMap1 .
 ?objectMap1 ?mode ?sourceAttribute1} .}

?p ?tm1 ?subjectValue1 ?objectValue2 ?logicalSource1 ?subject1 ?predicate1 ?objectMap1 ?tm2

ex:patient1 ex:triplesMap3 John Smith atinib /data/patientTreatments.csv ex:AnonymizationFunction3 ex:hasOncologicalTreatment ex:DBpediaFunction ex:triplesMap1

Powered by

Page 144

DeTrusty: Federated Query Engine for Validating KGs

Endpoint

INPUT

Query

OUTPUT

⋈
SPARQL Query Execution SHACL Schema Validation

Query Result Annotation

Minimize Execution Time

Finding physical plan for query Q whose execution validates the SHACL
shape schema S and produces the answers of Q efficiently

Philipp D Rohde SHACL Constraint Validation during SPARQL Query Processing. VLDB Workshop. 2021

Page 145

Traceable Query Processing

Q= SELECT distinct ?p ?drug
WHERE {
 ?p ex:hasOncologicalTreatment ?drug}

KG1

[[Q]]KG1 =
{{(?p,ex:patient1),(?drug,dbpedia:Afatinib)},
{(?p,ex:patient2),(?drug,dbpedia:Vinorelbine)},
{(?p,ex:patient3),(?drug,dbpedia:Nivolumab)}}

Traditional Approach for
Query Processing

Q= SELECT distinct ?p ?drug
WHERE {
 ?p ex:hasOncologicalTreatment ?drug}

KDE+KG1

[[Q]]KDE
KG1

 = {
({(?p,ex:patient1),(?drug,dbpedia:Afatinib)},
 {(ex:patient1,dke:invalidates,ex:NSLCProtocol1),
 (ex:patient1,dke:invalidates,ex:NSLCProtocol2)},
 {{(ex:patient1 prov:wasGeneratedBy ex:triplesMap1),
 (ex:patient1 kde-prov:subjectRawValue "John Smith")}
 { (dbpedia:Afatinib prov:wasGeneratedBy ex:triplesMap3),
 (dbpedia:Afatinib kde-prov:subjectRawValue "John Smith"),

 (dbpedia:Afatinib kde-prov:objectRawValue "atinib")}}),...}

Traceable Query Processing

set of SPARQL mappings
SHACL validation

Triple generation explanation

Page 146

SELECT ?p ?drug WHERE {
 ?p ex:hasOncologicalTreatment
?drug }

({(?p,ex:patient1),(?drug,dbpedia:Afatinib)},
 {(ex:patient1,dke:invalidates,ex:NSLCProtocol1),

 (ex:patient1,dke:validates,ex:NSLCProtocol2)}),...}

● subject star-shaped
decomposition

● one star ≈ one class

Query Decomposition

● interleaved validation
● subset of shape schema

SHACL Validation

● add SHACL validation result
as metadata

● explainability

Query Result Annotation Novelty of the approach:
● identification of query plan able to combine

query answering with integrity constraint validation
● explainability of SPARQL query results
● optimizations in SHACL validation

DeTrusty: Federated Query Engine for Validating KGs

Philipp D Rohde SHACL Constraint Validation during SPARQL Query Processing. VLDB Workshop. 2021

Page 147

DeTrusty - Initial Results

RQ: Is the performance improved by
applying the proposed approach?

WatDiv
● 10 million triples
● 3-5 triple patterns per query
● less than 100 query results

32 constraints
100,000 instances

Role Product
Category Genre

24 constraints
25,000 instances

2 constraints
145 instances

The performance is improved, but more studies are needed.

Philipp D Rohde SHACL Constraint Validation during SPARQL Query Processing. VLDB Workshop. 2021

Page 148

What are we still missing?

Case 1: Vinorelbine
and Cenobamate may
interact.

Case 2: Vinorelbine
and Cisplatin interact,
but are there further
studies that report the
effectiveness of them?

Case 3: Vinorelbine
and Nivolumab cannot
be prescribed together.
This must be an error!

Case 4: Are there further
studies that support the
effectivenes of
Vinorelbine?

Page 149

TRUSTKG

• Data integration paradigm to trace down

provenance and causal relations

• Ontologies to document causality and explanation

• Knowledge graph will integrate data, ontologies,
and causality models

• Validation and explanation of integrity constraint
satisfaction during data collection, curation,
integration, and query processing

• Fine-grained representation of scientific
publications to support literature-based explanation

• Visualization of explanations of causal relations

• Traceable data privacy regulations

• Evaluated in the context of lung and breast cancer
Leibniz Best Minds: Programme for Women Professors

Page 150

Conclusions

iASiS: Big Data to Support
Precision Medicine and

Public Health Policy. Final
Remote Review Meeting,

Sept. 2020

150
● Data Analytical and Machine Learning

methods able to exploit meta-data to
enhance explainability

● Planning the execution of mapping rules
and integrity constraints enable scalable
pipelines of KG creation and validation

Lessons Learned Follow-up

● Efficient query processing and
management techniques

● Declarative mapping languages
enable data transparency,
interpretability, and tracking down
data management

● Formalism to model causality and techniques
to mine and explain causal relations on KGs
Fine-grained representation of (meta)-data

● Data Integration Systems state
foundations for a declarative
specification of KGs

Page 151

https://github.com/SDM-TIB

Availability

Apache license 2.0 license

Adoption and Usability
Several European and national funded projects are already using the Knowledge Graph Creation Pipeline

Utility
Docker image

Documentation in

Video

https://www.youtube.com/watch?v=DpH_57M1uOE

P4-LUCAT

ImProViT

The Knowledge-driven Data Ecosystem as a Resource

https://github.com/SDM-TIB/SDM-RDFizer
https://www.youtube.com/watch?v=DpH_57M1uOE

Page 152

The Scientific Data Management Group

Thanks for your attention!

Maria-Esther Vidal
 maria.vidal@tib.eu @MEVidalSerodio

@TIB_SDM

Page 154

Calvanese et al. Ontop: Answering SPARQL Queries over Relational Databases. Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri,
Roman Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Semantic Web Journal. 2017 (SWJ 2016
Outstanding Paper Award)

Sequeda and Miranker Ultrawrap: SPARQL execution on relational data. Juan F. Sequeda, Daniel P. Miranker, J. Web Semant. 22: 19-39
(2013)

Priyatna et al. Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. Freddy Priyatna, Óscar
Corcho, Juan F. Sequeda. WWW 2014: 479-490

Endris et al. Ontario: Federated Query Processing Against a Semantic Data Lake. Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal,
Sören Auer. DEXA 2019: 379-395

Chaves et al. Enhancing virtual ontology based access over tabular data with Morph-CSV. David Chaves-Fraga, Edna Ruckhaus,
Freddy Priyatna, Maria-Esther Vidal, Óscar Corcho. Semantic Web 12(6): 869-902 (2021)

Iglesias et al. SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. Enrique Iglesias, Samaneh Jozashoori,
David Chaves-Fraga, Diego Collarana, Maria-Esther Vidal. CIKM 2020: 3039-3046

Jozashoori et al. FunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creation. Samaneh Jozashoori, David
Chaves-Fraga, Enrique Iglesias, Maria-Esther Vidal, Óscar Corcho: ISWC 2020: 276-293

Corman et al. 2018. Semantics and Validation of Recursive SHACL. Julien Corman, Juan L. Reutter, Ognjen Savkovic: ISWC 2018: 318-336

References

Page 155

Dimou et al. RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data. Anastasia Dimou, Miel Vander Sande, Pieter
Colpaert, Ruben Verborgh, Erik Mannens, Rik Van de Walle. LDOW 2014

Arenas-Guerrero et al. Morph-KGC: Scalable Knowledge GraphMaterialization with Mapping Partitions. Julián Arenas-Guerreroa, David
Chaves-Fragaa, Jhon Toledoa, María S. Pérezaand Oscar Corcho. Under Evaluation.
http://www.semantic-web-journal.net/system/files/swj2924.pdf

Simsek et al. RocketRML - A NodeJS Implementation of a Use Case Specific RML Mapper. Umutcan Simsek, Elias Kärle, Dieter Fensel:.
KGB@ESWC 2019: 46-53

Lefrançois et al. Maxime Lefrançois, Antoine Zimmermann, Noorani Bakerally: A SPARQL Extension for Generating RDF from
Heterogeneous Formats. ESWC (1) 2017: 35-

Scrocca et al. Turning Transport Data to Comply with EU Standards While Enabling a Multimodal Transport Knowledge Graph. Mario
Scrocca, Marco Comerio, Alessio Carenini, Irene Celino. ISWC (2) 2020: 411-429

Geisler S., Vidal M-E, et al. Knowledge-driven Data Ecosystems Towards Transparency. ACM Journal Data and Information Quality. 2022

Figuera et al. Trav-SHACL: Efficiently Validating Networks of SHACL Constraints. Mónica Figuera, Philipp D. Rohde, Maria-Esther Vidal.
WWW 2021: 3337-3348

Rohde. SHACL Constraint Validation during SPARQL Query Processing. Philipp D. Rohde. PhD@VLDB 2021

References

Page 156

Professor

Course

University

=1 undergraduateDegreeFrom≥1
 d

oc
to

ra
lD

eg
re

eF
ro

m
≥1 w

ork
sF

or

≥1 teacherOf

Graduate
Course

Graduate
Student

≥1 memberOf

=[0,
1] H

iwiO
f

=[1, 3] takes

=1 subOrgOf

=1 name
=1 advisor
≥1 email
≥1 phone

=1 name
≥1 email

=1 name

=1 name

=1 name

Department

Shapes Schema:
Integrity Constraints on the KG

INPUT

Set of classified
(valid / invalid) entities

OUTPUT
KG of a University System

with 37,419 entities
(~1M triples)

Example

3
=1 name

Page 157

Trav-SHACL: Reordering of a Shape’s Integrity Constraints

7

by determining inter- max-constraint violations
from constraint’s lower bound

Define and evaluate max-constraint
queries

Skip needless max-constraint queries

containing all local and inter-shape
min-cardinality constraints of shape s

negating each max-cardinality restriction

Define and evaluate single min-constraint
queryUniversity

=1 subOrgOf
Department

≥1 name

SELECT DISTINCT ?x, ?uni WHERE {

 ?x ub:subOrgOf ?uni.

 { SELECT DISTINCT ?x WHERE {

 ?x ub:name ?name.

 }}

}

Min-constraints
SPARQL query:

SELECT DISTINCT ?x, ?uni_1, ?uni_2 WHERE {

 ?x ub:subOrgOf ?uni_1.

 ?x ub:subOrgOf ?uni_2.

 FILTER(?uni_1 != !uni_2)

 { SELECT DISTINCT ?x WHERE {

 ?x ub:name ?name.

 }}

}

Max-constraint
SPARQL query:

SELECT DISTINCT ?x, ?uni_1, ?uni_2 WHERE {

 ?x ub:subOrgOf ?uni_1.

 ?x ub:subOrgOf ?uni_2.

 FILTER(?uni_1 != !uni_2)

 { SELECT DISTINCT ?x WHERE {

 ?x ub:name ?name.

 }}

}

EXCLUDED FROM

VALIDATION

1

2

3

Page 158

SELECT DISTINCT ?x, ?uni WHERE {

 ?x rdf:type ub:Department.

 {

 }

}

Trav-SHACL: Query Rewriting

uses SPARQL LIMIT and OFFSET clauses

 SELECT DISTINCT ?x, ?uni WHERE {

 ?x ub:subOrgOf ?uni.

{ SELECT DISTINCT ?x WHERE {

 ?x ub:name ?name.

}}

 }

University
≥1 subOrgOf

Department

≥1 name

 VALUES ?uni {ub:LUH}.

 ORDER BY ?x LIMIT 10000 OFFSET 0

Pushing FILTERs

Partition of Non-selective Queries

adds selectivity to 𝛄(DEF(s))

filters TARG(s) and 𝛄(DEF(s)) with
knowledge from out-neighbor shape

Min-constraints SPARQL query 𝛄(DEF(Department)) 8

Target-based Query Rewriting

Page 159

Trav-SHACL: Interleaved Execution

University(X).
Department(X) <- University(Y), hasDep(Y,X).

to classify every v in V𝒢 until

from evaluation of TARG(s) and 𝛄(DEF(s))

for entities and relations between
neighboring shapes

University(“LUH”).
Department(“Informatics”) <- University(“LUH”),
 hasDep(“LUH”,Informatics”).

“LUH” entity is valid, and
hasDep(“LUH”,Informatics”)

Department(“Informatics”) is inferred and
“Informatics” is valid.

9

University
≥1 subOrgOf

Department

≥1 name

Ground Logic Rules

Saturate

Collect Data

Page 160

Trav-SHACL: Execution TimeProposed Solution

Selective queries evaluated
19.75 less
grounded

rules

Same
validation

result

Shapes Schema Traversal Identified by Trav-SHACL:

Validation Summary:

Trav-SHACL validation:

● sound validation result,
● less memory consumption,
● faster execution time,
● scalable to large KGs

23.97
times
faster

Trav-SHACL
summary

Trav-SHACL performs a non-blocking
execution and produces results faster

Answer Traces:

10

