You're currently viewing an old version of this dataset. To see the current version, click here.

Seawater carbonate chemistry and the health and growth of eelgrass and the mass of oysters

Climate change is affecting the health and physiology of marine organisms and altering species interactions. Ocean acidification (OA) threatens calcifying organisms such as the Pacific oyster, Crassostrea gigas. In contrast, seagrasses, such as the eelgrass Zostera marina, can benefit from the increase in available carbon for photosynthesis found at a lower seawater pH. Seagrasses can remove dissolved inorganic carbon from OA environments, creating local daytime pH refugia. Pacific oysters may improve the health of eelgrass by filtering out pathogens such as Labyrinthula zosterae (LZ), which causes eelgrass wasting disease (EWD). We examined how co-culture of eelgrass ramets and juvenile oysters affected the health and growth of eelgrass and the mass of oysters under different pCO(2) exposures. In Phase I, each species was cultured alone or in co-culture at 12 degrees C across ambient, medium, and high pCO(2) conditions, (656, 1,158 and 1,606 mu atm pCO(2), respectively). Under high pCO(2), eelgrass grew faster and had less severe EWD (contracted in the field prior to the experiment). Co-culture with oysters also reduced the severity of EWD. While the presence of eelgrass decreased daytime pCO(2), this reduction was not substantial enough to ameliorate the negative impact of high pCO(2) on oyster mass. In Phase II, eelgrass alone or oysters and eelgrass in co-culture were held at 15 degrees C under ambient and high pCO(2) conditions, (488 and 2,013atm pCO(2), respectively). Half of the replicates were challenged with cultured LZ. Concentrations of defensive compounds in eelgrass (total phenolics and tannins), were altered by LZ exposure and pCO(2) treatments. Greater pathogen loads and increased EWD severity were detected in LZ exposed eelgrass ramets; EWD severity was reduced at high relative to low pCO(2). Oyster presence did not influence pathogen load or EWD severity; high LZ concentrations in experimental treatments may have masked the effect of this treatment. Collectively, these results indicate that, when exposed to natural concentrations of LZ under high pCO(2) conditions, eelgrass can benefit from co-culture with oysters. Further experimentation is necessary to quantify how oysters may benefit from co-culture with eelgrass, examine these interactions in the field and quantify context-dependency.

Data and Resources

This dataset has no data

Cite this as

Groner, Maya L, Burge, Colleen A, Cox, Ruth, Rivlin, Natalie D, Turner, Mo, Van Alstyne, Kathryn L, Wyllie‐Echeverria, Sandy, Bucci, John, Staudigel, Philip, Friedman, Carolyn S (2018). Dataset: Seawater carbonate chemistry and the health and growth of eelgrass and the mass of oysters. https://doi.org/10.1594/PANGAEA.920039

DOI retrieved: 2018

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.920039
Author Groner, Maya L
Given Name Maya L
Family Name Groner
More Authors
Burge, Colleen A
Cox, Ruth
Rivlin, Natalie D
Turner, Mo
Van Alstyne, Kathryn L
Wyllie‐Echeverria, Sandy
Bucci, John
Staudigel, Philip
Friedman, Carolyn S
Source Creation 2018
Publication Year 2018
Resource Type text/tab-separated-values - filename: Groner_2018_Ecol
Subject Areas
Name: BiologicalClassification

Name: Chemistry

Name: Ecology

Related Identifiers
Title: Oysters and eelgrass potential partners in a high pCO2 ocean
Identifier: https://doi.org/10.1002/ecy.2393
Type: DOI
Relation: References
Year: 2018
Source: Ecology
Authors: Groner Maya L , Burge Colleen A , Cox Ruth , Rivlin Natalie D , Turner Mo , Van Alstyne Kathryn L , Wyllie‐Echeverria Sandy , Bucci John , Staudigel Philip , Friedman Carolyn S , Groner Maya L , Burge Colleen A , Cox Ruth , Rivlin Natalie D , Turner Mo , Van Alstyne Kathryn L , Wyllie-Echeverria S , Bucci John , Friedman Carolyn S , Staudigal Philip , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James C , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .

Title: Data and statistical code associated with Oysters and eelgrass: Potential partners in a high pCO2 ocean
Identifier: https://doi.org/10.6084/m9.figshare.6182522
Type: DOI
Relation: References
Year: 2018
Source: Figshare
Authors: Groner Maya L , Burge Colleen A , Cox Ruth , Rivlin Natalie D , Turner Mo , Van Alstyne Kathryn L , Wyllie‐Echeverria Sandy , Bucci John , Staudigel Philip , Friedman Carolyn S , Groner Maya L , Burge Colleen A , Cox Ruth , Rivlin Natalie D , Turner Mo , Van Alstyne Kathryn L , Wyllie-Echeverria S , Bucci John , Friedman Carolyn S , Staudigal Philip , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James C , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .

Title: seacarb: seawater carbonate chemistry with R. R package version 3.2.12
Identifier: https://CRAN.R-project.org/package=seacarb
Type: DOI
Relation: References
Year: 2019
Authors: Groner Maya L , Burge Colleen A , Cox Ruth , Rivlin Natalie D , Turner Mo , Van Alstyne Kathryn L , Wyllie‐Echeverria Sandy , Bucci John , Staudigel Philip , Friedman Carolyn S , Groner Maya L , Burge Colleen A , Cox Ruth , Rivlin Natalie D , Turner Mo , Van Alstyne Kathryn L , Wyllie-Echeverria S , Bucci John , Friedman Carolyn S , Staudigal Philip , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James C , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .