You're currently viewing an old version of this dataset. To see the current version, click here.

Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs

Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. In order to address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27°C, 30.3°C) and CO2 partial pressures (pCO2) (400, 900, 1300 µatm). Mixed effects models of calcification for each species were then used to project community-level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business-as-usual CO2 emissions scenario, reefs with high abundances of these species had projected end-of-century declines in scleractinian calcification of >50% relative to present-day rates. Siderastrea siderea, the other most-common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end-of-century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10 to 100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.

Data and Resources

This dataset has no data

Cite this as

Okazaki, Remy, Towle, Erica K, van Hooidonk, Ruben, Mor, Carolina, Winter, Rivah N, Piggot, Alan M, Cunning, Ross, Baker, Andrew, Klaus, James S, Swart, Peter K, Langdon, Chris (2017). Dataset: Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. https://doi.org/10.1594/PANGAEA.867493

DOI retrieved: 2017

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.867493
Author Okazaki, Remy
Given Name Remy
Family Name Okazaki
More Authors
Towle, Erica K
van Hooidonk, Ruben
Mor, Carolina
Winter, Rivah N
Piggot, Alan M
Cunning, Ross
Baker, Andrew
Klaus, James S
Swart, Peter K
Langdon, Chris
Source Creation 2017
Publication Year 2017
Resource Type text/tab-separated-values - filename: Okazaki_2016
Subject Areas
Name: BiologicalClassification

Name: Chemistry

Name: Ecology

Related Identifiers
Title: Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs
Identifier: https://doi.org/10.1111/gcb.13481
Type: DOI
Relation: IsSupplementTo
Year: 2016
Source: Global Change Biology
Authors: Okazaki Remy , Towle Erica K , van Hooidonk Ruben , Mor Carolina , Winter Rivah N , Piggot Alan M , Cunning Ross , Baker Andrew , Klaus James S , Swart Peter K , Langdon Chris .

Title: seacarb: seawater carbonate chemistry with R. R package version 3.0.8
Identifier: https://cran.r-project.org/package=seacarb
Type: DOI
Relation: References
Year: 2015
Authors: Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse .