You're currently viewing an old version of this dataset. To see the current version, click here.

Seawater carbonate chemistry and size, thermal tolerance and metabolic rate of the red sea urchin (Mesocentrotus franciscanus) during early development

The red sea urchin Mesocentrotus franciscanus supports a highly valuable wild fishery along the West Coast of North America, but despite its importance in the ecology of kelp forests and as a harvested species, little is known about how M. franciscanus responds to abiotic stressors associated with ocean warming and acidification during its early development. Here, embryos of M. franciscanus were raised under combinations of two temperatures (13 °C and 17 °C) and two pCO2 levels (475 μatm and 1050 μatm) that represent current and future coastal environments. Elevated pCO2 levels led to a decrease in body size of gastrula stage embryos while temperature had no effect. At the prism stage, both temperature and pCO2 affected body size. The warmer temperature increased the body size of prism stage embryos, offsetting the stunting effect of elevated pCO2 on growth. Thermal tolerance, which was estimated by exposing prism stage embryos to a range of temperatures and estimating the survivorship, was found to be slightly higher in those raised under warmer temperatures. The developmental temperature and pCO2 conditions under which embryos were raised did not have an effect on the metabolic rate as measured by oxygen consumption rate at the prism stage. This study provides important insights into a species of high ecological and economic value. Overall, early development under elevated pCO2 conditions may adversely impact M. franciscanus while moderate warming may improve growth and thermal tolerance. Understanding how fishery species respond to abiotic stressors will facilitate our predictive capacity of how climate change will impact future populations, which links to issues such as sustainability and food security.

Data and Resources

This dataset has no data

Cite this as

Wong, Juliet M, Hofmann, Gretchen E (2020). Dataset: Seawater carbonate chemistry and size, thermal tolerance and metabolic rate of the red sea urchin (Mesocentrotus franciscanus) during early development. https://doi.org/10.1594/PANGAEA.924889

DOI retrieved: 2020

Additional Info

Field Value
Imported on November 29, 2024
Last update November 30, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.924889
Author Wong, Juliet M
Given Name Juliet M
Family Name Wong
More Authors
Hofmann, Gretchen E
Source Creation 2020
Publication Year 2020
Resource Type text/tab-separated-values - filename: Wong-etal_2020_MB
Subject Areas
Name: BiologicalClassification

Name: Biosphere

Name: Chemistry

Name: Oceans

Related Identifiers
Title: The effects of temperature and pCO2 on the size, thermal tolerance and metabolic rate of the red sea urchin (Mesocentrotus franciscanus) during early development
Identifier: https://doi.org/10.1007/s00227-019-3633-y
Type: DOI
Relation: References
Year: 2020
Source: Marine Biology
Authors: Wong Juliet M , Hofmann Gretchen E , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .

Title: seacarb: seawater carbonate chemistry with R. R package version 3.2.14
Identifier: https://CRAN.R-project.org/package=seacarb
Type: DOI
Relation: References
Year: 2020
Authors: Wong Juliet M , Hofmann Gretchen E , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .