You're currently viewing an old version of this dataset. To see the current version, click here.

Seawater carbonate chemistry and copepod reproduction

The combined upwelling-El Niño (EN) event regulation of the numerically dominant Acartia tonsa (Crustacea, Copepoda) reproduction was examined in a year-round upwelling system (23°S) of the Humboldt Eastern Boundary Upwelling System (EBUS) during the EN 2015. A previous analysis of the environmental regulation of this system is extended here by considering complementary oceanographic information (sea level, stratification indexes) and additional reproductive traits, such as maximum (MaxEPR), median (MedianEPR) and prevalence of egg producing females over a period of six months. Furthermore, field minimum-maximum pH levels were reproduced in three 96-h incubation experiments conducted under variable salinity conditions to evaluate copepod mean EPR, egg size and hatching success. Supporting previous assertions, the warm-high salinity EN 2015 was observed in the study site separately from hydrographic conditions associated with upwelling to non-upwelling regimes. Analysis of similarity-distance (Distance based Linear Model (DistLM)) and normalized data (separate-slope comparison under a General Linear Model (GLM)) showed that reproductive traits were regulated by specific combinations of ambient conditions, and that this regulation was also sensitive to the prevailing hydrographic regime. Thus, upwelling to non-upwelling transitions changing the pH, and EN-associated salinity and stratification shifts, were significantly and strongly linked to almost all reproductive traits (DistLM). Slope comparison (GLM) indicated MaxEPR and MedianEPR variations also underlie the phenology, highlighting the relationship between pH and salinity with biological variations. In conjunction with experimental observations, the current study consistently suggests that pH-variations in the upwelling realm, and EN hydrographic perturbations might underpin responses of plankton populations to climate change in productive EBUS.

Data and Resources

This dataset has no data

Cite this as

Aguilera, Victor M (2020). Dataset: Seawater carbonate chemistry and copepod reproduction. https://doi.org/10.1594/PANGAEA.925454

DOI retrieved: 2020

Additional Info

Field Value
Imported on November 29, 2024
Last update November 29, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.925454
Author Aguilera, Victor M
Given Name Victor M
Family Name Aguilera
Source Creation 2020
Publication Year 2020
Resource Type text/tab-separated-values - filename: Aguilera_2020_ECSS
Subject Areas
Name: BiologicalClassification

Name: Biosphere

Name: Chemistry

Name: Oceans

Related Identifiers
Title: pH and other upwelling hydrographic drivers in regulating copepod reproduction during the 2015 El Niño event: A follow-up study
Identifier: https://doi.org/10.1016/j.ecss.2020.106640
Type: DOI
Relation: References
Year: 2020
Source: Estuarine, Coastal and Shelf Science
Authors: Aguilera Victor M , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .

Title: seacarb: seawater carbonate chemistry with R. R package version 3.2.14
Identifier: https://CRAN.R-project.org/package=seacarb
Type: DOI
Relation: References
Year: 2020
Authors: Aguilera Victor M , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .