Traffic Regulator Ground-truth Information of the City of Hannover, Germany

This dataset contains the ground-truth intersection regulators for a majority of intersections of the city of Hannover, Germany. The ground-truth information is used in order to apply machine learning techniques on (car) GPS trajectory data in order to automatically detect the intersection regulation.

Rules

The GPS trajectories related to specifically this dataset are (also) available under: https://doi.org/10.25835/9bidqxvl

Data Acquisition

The ground-truth information are acquired by visiting them on-site and apply manual labeling of each intersection arm individually. Furthermore, satellite images and street-level images were considered but only on a minor degree as on-site labeling is found to be more precise and up-to-date.

Related Publications:

  • Zourlidou, S., Sester, M. and Hu, S. (2022): Recognition of Intersection Traffic Regulations From Crowdsourced Data. Preprints 2022, 2022070012. DOI: https://doi.org/10.20944/preprints202207.0012.v1

  • Zourlidou, S., Golze, J. and Sester, M. (2022): Traffic Regulation Recognition using Crowd-Sensed GPS and Map Data: a Hybrid Approach, AGILE GIScience Ser., 3, 22, 2022. https://doi.org/10.5194/agile-giss-3-22-2022

  • Cheng, H., Lei, H., Zourlidou, S., Sester, M. (2022): Traffic Control Recognition with an Attention Mechanism Using Speed-Profile and Satellite Imagery data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022, S. 287–29. https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-287-2022

  • Wang, C., Zourlidou, S., Golze, J. and Sester, M. (2020): Trajectory analysis at intersections for traffic rule identification. Geo-spatial Information Science, 11(4):1-10. https://doi.org/10.1080/10095020.2020.1843374

  • Cheng, H., Zourlidou, S. and Sester, M. (2020): Traffic Control Recognition with Speed-Profiles: A Deep Learning Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 652. https://doi.org/10.3390/ijgi9110652

  • Golze, J., Zourlidou, S. and Sester, M. (2020): Traffic Regulator Detection Using GPS Trajectories. KN J. Cartogr. Geogr. Inf. https://doi.org/10.1007/s42489-020-00048-x

  • Zourlidou, S., Fischer, C. and Sester, M. (2019): Classification of street junctions according to traffic regulators. In: Kyriakidis, P., Hadjimitsis, D., Skarlatos, D. and Mansourian, A., (eds) 2019. Accepted short papers and posters from the 22nd AGILE conference on geo-information science. Cyprus University of Technology 17–20 June 2019, Limassol, Cyprus.

Related Datasets:

  • Zourlidou, S., Golze, J. and Sester, M. (2022). Dataset: GPS Trajectory Dataset of the Region of Hannover, Germany. https://doi.org/10.25835/9bidqxvl

  • Zourlidou, S., Golze, J. and Sester, M. (2022). Dataset: Traffic Regulator Ground-truth Information for the Chicago Trajectory Dataset. https://doi.org/10.25835/0vifyzqi

  • Zourlidou, S., Golze, J. and Sester, M. (2022). Dataset: GPS Trajectory Dataset and Traffic Regulation Information of the Region of Edessa, Greece. https://doi.org/10.25835/v0mzwob3

  • Zourlidou, S., Golze, J. and Sester, M. (2020). Dataset: Speed profiles and GPS Trajectories for Traffic Rule Recognition (6 Junctions, Hannover, Germany). https://doi.org/10.25835/0043786

Data and Resources

Cite this as

Zourlidou, Stefania (2022). Dataset: Traffic Regulator Ground-truth Information of the City of Hannover, Germany. https://doi.org/10.25835/cqg0x1el

DOI retrieved: August 1, 2022

Additional Info

Field Value
Imported on January 12, 2023
Last update November 28, 2024
License CC-BY-NC-3.0
Source https://data.uni-hannover.de/dataset/ground-truth-intersection-regulators-for-hannover
Author Zourlidou, Stefania
Given Name Stefania
Family Name Zourlidou
Author Email Zourlidou, Stefania
Maintainer Jens Golze
Maintainer Email Jens Golze
Source Creation 26 July, 2022, 07:50 AM (UTC+0000)
Source Modified 05 April, 2024, 14:24 PM (UTC+0000)