Changes
On August 4, 2023 at 9:29:02 AM UTC, admin:
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Mamleyev, Emil R.", | 2 | "author": "Mamleyev, Emil R.", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1291", | 5 | "doi": "10.35097/1291", | ||
6 | "doi_date_published": "2023", | 6 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "groups": [], | 9 | "groups": [], | ||
10 | "id": "ad0d4f39-fe2d-4bfd-bf8f-54d487fffac3", | 10 | "id": "ad0d4f39-fe2d-4bfd-bf8f-54d487fffac3", | ||
11 | "isopen": false, | 11 | "isopen": false, | ||
12 | "license_id": "CC BY 4.0 Attribution", | 12 | "license_id": "CC BY 4.0 Attribution", | ||
13 | "license_title": "CC BY 4.0 Attribution", | 13 | "license_title": "CC BY 4.0 Attribution", | ||
14 | "metadata_created": "2023-08-04T08:50:28.068696", | 14 | "metadata_created": "2023-08-04T08:50:28.068696", | ||
t | 15 | "metadata_modified": "2023-08-04T09:04:08.817375", | t | 15 | "metadata_modified": "2023-08-04T09:29:02.428772", |
16 | "name": "rdr-doi-10-35097-1291", | 16 | "name": "rdr-doi-10-35097-1291", | ||
17 | "notes": "Abstract: Kosteng\u00fcnstige enzymfreie Glukosesensoren | 17 | "notes": "Abstract: Kosteng\u00fcnstige enzymfreie Glukosesensoren | ||
18 | mit teilweiser Flexibilit\u00e4t, die f\u00fcr tragbare | 18 | mit teilweiser Flexibilit\u00e4t, die f\u00fcr tragbare | ||
19 | Internet-of-Things-Ger\u00e4te geeignet sind und als personalisierte | 19 | Internet-of-Things-Ger\u00e4te geeignet sind und als personalisierte | ||
20 | Point-of-Care-Ger\u00e4te in Betracht gezogen werden k\u00f6nnen, | 20 | Point-of-Care-Ger\u00e4te in Betracht gezogen werden k\u00f6nnen, | ||
21 | wurden durch die galvanische Abscheidung von Kupfer auf lokal | 21 | wurden durch die galvanische Abscheidung von Kupfer auf lokal | ||
22 | karbonisierten flexiblen Meta-Polyaramid-Folien (Nomex) unter | 22 | karbonisierten flexiblen Meta-Polyaramid-Folien (Nomex) unter | ||
23 | Verwendung von Laserstrahlung hergestellt. Freistehende Filme wurden | 23 | Verwendung von Laserstrahlung hergestellt. Freistehende Filme wurden | ||
24 | in Stickstoff- und Stickstoff/Luft-Arbeitsumgebungen getempert, was | 24 | in Stickstoff- und Stickstoff/Luft-Arbeitsumgebungen getempert, was | ||
25 | zur Bildung von Cu-Mikrosph\u00e4roiden und CuO-Egeln f\u00fchrte, die | 25 | zur Bildung von Cu-Mikrosph\u00e4roiden und CuO-Egeln f\u00fchrte, die | ||
26 | auf dem Substratfilm verteilt waren. Der Aggregationsmechanismus, die | 26 | auf dem Substratfilm verteilt waren. Der Aggregationsmechanismus, die | ||
27 | kristallographischen Eigenschaften, die Oberfl\u00e4chenchemie und die | 27 | kristallographischen Eigenschaften, die Oberfl\u00e4chenchemie und die | ||
28 | elektrochemischen Eigenschaften der Filme wurden mittels | 28 | elektrochemischen Eigenschaften der Filme wurden mittels | ||
29 | Rasterelektronenmikroskopie, R\u00f6ntgendiffraktometrie, | 29 | Rasterelektronenmikroskopie, R\u00f6ntgendiffraktometrie, | ||
30 | Transmissionselektronenmikroskopie, | 30 | Transmissionselektronenmikroskopie, | ||
31 | R\u00f6ntgenphotoelektronenspektroskopie und zyklischer Voltammetrie | 31 | R\u00f6ntgenphotoelektronenspektroskopie und zyklischer Voltammetrie | ||
32 | untersucht. Cu-Mikrosph\u00e4roide und CuO-Igel erreichten | 32 | untersucht. Cu-Mikrosph\u00e4roide und CuO-Igel erreichten | ||
33 | Aktivit\u00e4t f\u00fcr den Glukose-Nachweis und zeigten eine | 33 | Aktivit\u00e4t f\u00fcr den Glukose-Nachweis und zeigten eine | ||
34 | Verbesserung der amperometrischen Empfindlichkeit auf 0,25 bzw. 0,32 | 34 | Verbesserung der amperometrischen Empfindlichkeit auf 0,25 bzw. 0,32 | ||
35 | mA cm-2 mM-1. Der CuO-Igelfilm behielt seine chemische Zusammensetzung | 35 | mA cm-2 mM-1. Der CuO-Igelfilm behielt seine chemische Zusammensetzung | ||
36 | nach der amperometrischen Pr\u00fcfung bei und erm\u00f6glichte durch | 36 | nach der amperometrischen Pr\u00fcfung bei und erm\u00f6glichte durch | ||
37 | Sp\u00fclen mehrere Wiederholungen mit reproduzierbaren Ergebnissen. | 37 | Sp\u00fclen mehrere Wiederholungen mit reproduzierbaren Ergebnissen. | ||
38 | Diese Studie er\u00f6ffnet die M\u00f6glichkeit zur Herstellung | 38 | Diese Studie er\u00f6ffnet die M\u00f6glichkeit zur Herstellung | ||
39 | langlebiger Verbundstoff-Biosensoren mit ma\u00dfgeschneiderter Form, | 39 | langlebiger Verbundstoff-Biosensoren mit ma\u00dfgeschneiderter Form, | ||
40 | die in flexible Tr\u00e4ger und mikrofluidische Systeme eingebaut | 40 | die in flexible Tr\u00e4ger und mikrofluidische Systeme eingebaut | ||
41 | werden k\u00f6nnen.\r\nAbstract: Low-cost enzyme-free glucose sensors | 41 | werden k\u00f6nnen.\r\nAbstract: Low-cost enzyme-free glucose sensors | ||
42 | with partial flexibility adaptable for wearable Internet of Things | 42 | with partial flexibility adaptable for wearable Internet of Things | ||
43 | devices that can be envisioned as personalized point-of-care devices | 43 | devices that can be envisioned as personalized point-of-care devices | ||
44 | were produced by electroplating copper on locally carbonized flexible | 44 | were produced by electroplating copper on locally carbonized flexible | ||
45 | meta-polyaramid (Nomex) sheets using laser radiation. Freestanding | 45 | meta-polyaramid (Nomex) sheets using laser radiation. Freestanding | ||
46 | films were annealed in nitrogen and nitrogen/air working environments, | 46 | films were annealed in nitrogen and nitrogen/air working environments, | ||
47 | leading to the formation of Cu microspheroids and CuO urchins | 47 | leading to the formation of Cu microspheroids and CuO urchins | ||
48 | dispersed on the substrate film. The aggregation mechanism, | 48 | dispersed on the substrate film. The aggregation mechanism, | ||
49 | crystallographic properties, surface chemistry, and electrochemical | 49 | crystallographic properties, surface chemistry, and electrochemical | ||
50 | properties of the films were studied using scanning electron | 50 | properties of the films were studied using scanning electron | ||
51 | microscopy, X-ray diffractometry, transmission electron microscopy, | 51 | microscopy, X-ray diffractometry, transmission electron microscopy, | ||
52 | X-ray photoelectron spectroscopy, and cyclic voltammetry. Cu | 52 | X-ray photoelectron spectroscopy, and cyclic voltammetry. Cu | ||
53 | microspheroids and CuO urchins attained activity for glucose detection | 53 | microspheroids and CuO urchins attained activity for glucose detection | ||
54 | and showed improvement of amperometric sensitivity to 0.25 and 0.32 mA | 54 | and showed improvement of amperometric sensitivity to 0.25 and 0.32 mA | ||
55 | cm\u20132 mM\u20131, respectively. The CuO urchin film retained its | 55 | cm\u20132 mM\u20131, respectively. The CuO urchin film retained its | ||
56 | chemical composition after amperometric testing, and, by rinsing, | 56 | chemical composition after amperometric testing, and, by rinsing, | ||
57 | allowed multiple repetitions with reproducible results. This study | 57 | allowed multiple repetitions with reproducible results. This study | ||
58 | opens the possibility for the fabrication of durable composite | 58 | opens the possibility for the fabrication of durable composite | ||
59 | biosensors with tailored shape, capable of implementation in flexible | 59 | biosensors with tailored shape, capable of implementation in flexible | ||
60 | carriers, and microfluidic systems.\r\nTechnicalRemarks: The collected | 60 | carriers, and microfluidic systems.\r\nTechnicalRemarks: The collected | ||
61 | data presented in OriginPro (2021) and structured according to the | 61 | data presented in OriginPro (2021) and structured according to the | ||
62 | figures name from the publication. The schemes made with CorelDRAW | 62 | figures name from the publication. The schemes made with CorelDRAW | ||
63 | (v17). The formulas were created with ChemOffice. The images can be | 63 | (v17). The formulas were created with ChemOffice. The images can be | ||
64 | handled with standard toolkit.", | 64 | handled with standard toolkit.", | ||
65 | "num_resources": 0, | 65 | "num_resources": 0, | ||
66 | "num_tags": 5, | 66 | "num_tags": 5, | ||
67 | "orcid": "", | 67 | "orcid": "", | ||
68 | "organization": { | 68 | "organization": { | ||
69 | "approval_status": "approved", | 69 | "approval_status": "approved", | ||
70 | "created": "2023-01-12T13:30:23.238233", | 70 | "created": "2023-01-12T13:30:23.238233", | ||
71 | "description": "RADAR (Research Data Repository) is a | 71 | "description": "RADAR (Research Data Repository) is a | ||
72 | cross-disciplinary repository for archiving and publishing research | 72 | cross-disciplinary repository for archiving and publishing research | ||
73 | data from completed scientific studies and projects. The focus is on | 73 | data from completed scientific studies and projects. The focus is on | ||
74 | research data from subjects that do not yet have their own | 74 | research data from subjects that do not yet have their own | ||
75 | discipline-specific infrastructures for research data management. ", | 75 | discipline-specific infrastructures for research data management. ", | ||
76 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 76 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
77 | "image_url": "radar-logo.svg", | 77 | "image_url": "radar-logo.svg", | ||
78 | "is_organization": true, | 78 | "is_organization": true, | ||
79 | "name": "radar", | 79 | "name": "radar", | ||
80 | "state": "active", | 80 | "state": "active", | ||
81 | "title": "RADAR", | 81 | "title": "RADAR", | ||
82 | "type": "organization" | 82 | "type": "organization" | ||
83 | }, | 83 | }, | ||
84 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 84 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
85 | "private": false, | 85 | "private": false, | ||
86 | "production_year": "2021", | 86 | "production_year": "2021", | ||
87 | "publication_year": "2023", | 87 | "publication_year": "2023", | ||
88 | "publishers": [ | 88 | "publishers": [ | ||
89 | { | 89 | { | ||
90 | "publisher": "Karlsruhe Institute of Technology" | 90 | "publisher": "Karlsruhe Institute of Technology" | ||
91 | } | 91 | } | ||
92 | ], | 92 | ], | ||
93 | "relationships_as_object": [], | 93 | "relationships_as_object": [], | ||
94 | "relationships_as_subject": [], | 94 | "relationships_as_subject": [], | ||
95 | "repository_name": "RADAR (Research Data Repository)", | 95 | "repository_name": "RADAR (Research Data Repository)", | ||
96 | "resources": [], | 96 | "resources": [], | ||
97 | "services_used_list": "", | 97 | "services_used_list": "", | ||
98 | "source_metadata_created": "2023", | 98 | "source_metadata_created": "2023", | ||
99 | "source_metadata_modified": "", | 99 | "source_metadata_modified": "", | ||
100 | "state": "active", | 100 | "state": "active", | ||
101 | "subject_areas": [ | 101 | "subject_areas": [ | ||
102 | { | 102 | { | ||
103 | "subject_area_additional": "", | 103 | "subject_area_additional": "", | ||
104 | "subject_area_name": "Engineering" | 104 | "subject_area_name": "Engineering" | ||
105 | } | 105 | } | ||
106 | ], | 106 | ], | ||
107 | "tags": [ | 107 | "tags": [ | ||
108 | { | 108 | { | ||
109 | "display_name": "copper", | 109 | "display_name": "copper", | ||
110 | "id": "0b084902-2484-4427-beb3-3749a4449288", | 110 | "id": "0b084902-2484-4427-beb3-3749a4449288", | ||
111 | "name": "copper", | 111 | "name": "copper", | ||
112 | "state": "active", | 112 | "state": "active", | ||
113 | "vocabulary_id": null | 113 | "vocabulary_id": null | ||
114 | }, | 114 | }, | ||
115 | { | 115 | { | ||
116 | "display_name": "copper oxide urchins", | 116 | "display_name": "copper oxide urchins", | ||
117 | "id": "5d87b9cb-335d-48fa-88a8-046ed11cfca4", | 117 | "id": "5d87b9cb-335d-48fa-88a8-046ed11cfca4", | ||
118 | "name": "copper oxide urchins", | 118 | "name": "copper oxide urchins", | ||
119 | "state": "active", | 119 | "state": "active", | ||
120 | "vocabulary_id": null | 120 | "vocabulary_id": null | ||
121 | }, | 121 | }, | ||
122 | { | 122 | { | ||
123 | "display_name": "glucose sensing", | 123 | "display_name": "glucose sensing", | ||
124 | "id": "3a2ae641-7c8d-43d9-b493-a776866b890b", | 124 | "id": "3a2ae641-7c8d-43d9-b493-a776866b890b", | ||
125 | "name": "glucose sensing", | 125 | "name": "glucose sensing", | ||
126 | "state": "active", | 126 | "state": "active", | ||
127 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
128 | }, | 128 | }, | ||
129 | { | 129 | { | ||
130 | "display_name": "laser-induced carbonization", | 130 | "display_name": "laser-induced carbonization", | ||
131 | "id": "36750823-d491-49ea-89da-52bf3c29d7b6", | 131 | "id": "36750823-d491-49ea-89da-52bf3c29d7b6", | ||
132 | "name": "laser-induced carbonization", | 132 | "name": "laser-induced carbonization", | ||
133 | "state": "active", | 133 | "state": "active", | ||
134 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
135 | }, | 135 | }, | ||
136 | { | 136 | { | ||
137 | "display_name": "polyaramid", | 137 | "display_name": "polyaramid", | ||
138 | "id": "2a46f4c0-aa6f-4d42-9ce2-291804c392f0", | 138 | "id": "2a46f4c0-aa6f-4d42-9ce2-291804c392f0", | ||
139 | "name": "polyaramid", | 139 | "name": "polyaramid", | ||
140 | "state": "active", | 140 | "state": "active", | ||
141 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
142 | } | 142 | } | ||
143 | ], | 143 | ], | ||
144 | "title": "Nano- and microstructured copper/copper oxide composites | 144 | "title": "Nano- and microstructured copper/copper oxide composites | ||
145 | on laser-induced carbon for enzyme-free glucose sensors", | 145 | on laser-induced carbon for enzyme-free glucose sensors", | ||
146 | "type": "vdataset", | 146 | "type": "vdataset", | ||
147 | "url": "https://doi.org/10.35097/1291" | 147 | "url": "https://doi.org/10.35097/1291" | ||
148 | } | 148 | } |