f | { | f | { |
n | "author": "Max Coenen", | n | "author": "Coenen, Max", |
| "author_email": "m.coenen@baustof.uni-hannover.de", | | "author_email": "m.coenen@baustof.uni-hannover.de", |
n | | n | "citation": [], |
| "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", |
| "doi": "10.25835/61y9peiq", | | "doi": "10.25835/61y9peiq", |
| "doi_date_published": "2022-11-23", | | "doi_date_published": "2022-11-23", |
| "doi_publisher": "LUIS", | | "doi_publisher": "LUIS", |
| "doi_status": "true", | | "doi_status": "true", |
| "domain": "https://data.uni-hannover.de", | | "domain": "https://data.uni-hannover.de", |
n | | n | "familyName": "Coenen", |
| | | "givenName": "Max", |
| "groups": [], | | "groups": [], |
| "have_copyright": "Yes", | | "have_copyright": "Yes", |
| "id": "1bf33963-a111-48fb-a662-9c6fa9b248af", | | "id": "1bf33963-a111-48fb-a662-9c6fa9b248af", |
| "isopen": false, | | "isopen": false, |
| "license_id": "CC-BY-NC-3.0", | | "license_id": "CC-BY-NC-3.0", |
| "license_title": "CC-BY-NC-3.0", | | "license_title": "CC-BY-NC-3.0", |
| "maintainer": "Max Coenen", | | "maintainer": "Max Coenen", |
| "maintainer_email": "m.coenen@baustoff.uni-hannover.de", | | "maintainer_email": "m.coenen@baustoff.uni-hannover.de", |
| "metadata_created": "2023-01-12T13:14:11.720857", | | "metadata_created": "2023-01-12T13:14:11.720857", |
n | "metadata_modified": "2023-08-04T08:46:26.290084", | n | "metadata_modified": "2024-11-28T12:49:02.660127", |
| "name": "luh-deep-granulometry", | | "name": "luh-deep-granulometry", |
| "notes": "This repository contains the data related to the paper ** | | "notes": "This repository contains the data related to the paper ** |
n | \"Deep Granulometry: Image based estimation of concrete aggregate size | n | \"Granulometry transformer: image-based granulometry of concrete |
| distributions using deep learning\" ** where a deep learning based | | aggregate for an automated concrete production control\" ** where a |
| method is proposed for the image based determination of concrete | | deep learning based method is proposed for the image based |
| aggregate grading curves (cf. video).\r\n\r\n[![Watch the | | determination of concrete aggregate grading curves (cf. |
| | | video).\r\n\r\n[![Watch the |
| enen.github.io/resources/images/2023_DeepGranulometry.mp4)\r\n\r\nMore | | enen.github.io/resources/images/2023_DeepGranulometry.mp4)\r\n\r\nMore |
| specifically, the data set consists of images showing concrete | | specifically, the data set consists of images showing concrete |
| aggregate particles and reference data of the particle size | | aggregate particles and reference data of the particle size |
| distribution (grading curves) associated to each image. \r\nIt is | | distribution (grading curves) associated to each image. \r\nIt is |
| distinguished between the **CoarseAggregateData** and the | | distinguished between the **CoarseAggregateData** and the |
| **FineAggregateData**. \r\n \r\n \r\n\r\n\r\n\r\n# Coarse | | **FineAggregateData**. \r\n \r\n \r\n\r\n\r\n\r\n# Coarse |
| Aggregate Data\r\nThe __coarse__ data consists of aggregate samples | | Aggregate Data\r\nThe __coarse__ data consists of aggregate samples |
| with different particles sizes ranging from 0.1 mm to 32 mm. The | | with different particles sizes ranging from 0.1 mm to 32 mm. The |
| grading curves are designed by linearly interpolation between a very | | grading curves are designed by linearly interpolation between a very |
| fine and a very coarse distribution for three variants with maximum | | fine and a very coarse distribution for three variants with maximum |
| grain sizes of 8 mm, 16 mm, and 32 mm, respectively. For each variant, | | grain sizes of 8 mm, 16 mm, and 32 mm, respectively. For each variant, |
| we designed eleven grading curves, resulting in a total number 33, | | we designed eleven grading curves, resulting in a total number 33, |
| which are shown in the figure below. For each sample, we acquired 50 | | which are shown in the figure below. For each sample, we acquired 50 |
| images with a GSD of 0.125 mm, resulting in a data set of 1650 images | | images with a GSD of 0.125 mm, resulting in a data set of 1650 images |
| in total. Example images for a subset of the\r\ngrading curves of this | | in total. Example images for a subset of the\r\ngrading curves of this |
| data set are shown in the following figure.\r\n\r\n![Example images | | data set are shown in the following figure.\r\n\r\n![Example images |
| and grading curves of the coarse data | | and grading curves of the coarse data |
| source/8cb30616-5b24-4028-9c1d-ea250ac8ac84/download/examplecoarse.png | | source/8cb30616-5b24-4028-9c1d-ea250ac8ac84/download/examplecoarse.png |
| \" \")\r\n\r\n \r\n \r\n\r\n# Fine Aggregate Data\r\nSimilar | | \" \")\r\n\r\n \r\n \r\n\r\n# Fine Aggregate Data\r\nSimilar |
| to the previous data set, the __fine__ data set contains grading | | to the previous data set, the __fine__ data set contains grading |
| curves for the fine\r\nfraction of concrete aggregate of 0 to 2 mm | | curves for the fine\r\nfraction of concrete aggregate of 0 to 2 mm |
| with a GSD of 28.5 $\\mu$m.\r\nWe defined two base distributions of | | with a GSD of 28.5 $\\mu$m.\r\nWe defined two base distributions of |
| different shapes for the upper and lower bound, respectively, | | different shapes for the upper and lower bound, respectively, |
| resulting in two interpolated grading curve sets (Set A and Set B). In | | resulting in two interpolated grading curve sets (Set A and Set B). In |
| total, 1700\r\nimages of 34 different particle size distributions were | | total, 1700\r\nimages of 34 different particle size distributions were |
| acquired. Example images of the data set and the corresponding grading | | acquired. Example images of the data set and the corresponding grading |
| curves are shown in the figure below.\r\n![Example images and grading | | curves are shown in the figure below.\r\n![Example images and grading |
| curves of the finedata | | curves of the finedata |
| resource/c56f4298-9663-457f-aaa7-0ba113fec4c9/download/examplefine.png | | resource/c56f4298-9663-457f-aaa7-0ba113fec4c9/download/examplefine.png |
| \" \")\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n## Related | | \" \")\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n## Related |
n | publications:\r\nIf you make use of the proposed data, please cite one | n | publications:\r\nIf you make use of the proposed data, please cite. |
| of the publication listed below. \r\n\r\n* **Coenen, M., Beyer, D., | | \r\n\r\n* **Coenen, M., Beyer, D., and Haist, M., 2023**: Granulometry |
| and Haist, M., 2023**: Granulometry Transformer: Image-based | | Transformer: Image-based Granulometry of Concrete Aggregate for an |
| Granulometry of Concrete Aggregate for an automated Concrete | | |
| Production Control. In: Proceedings of the European Conference on | | automated Concrete Production Control. In: Proceedings of the European |
| Computing in Construction (EC3).\r\n\r\n* **Coenen, M., Beyer, D., | | Conference on Computing in Construction (EC3), doi: |
| Ponick, A., Heipke, C. and Haist, M., 2023**: Deep Granulometry: Image | | 10.35490/EC3.2023.223.\r\n\r\n", |
| based estimation of concrete aggregate size distributions using deep | | |
| learning. _To be published_.\r\n\r\n## Source Code \r\nSource code for | | |
| CNN based prediction of grading curves using the data set can be found | | |
| on github under following | | |
| [Link](https://github.com/MaximilianCoenen/DeepGranulometry.git).", | | |
| "num_resources": 4, | | "num_resources": 4, |
| "num_tags": 5, | | "num_tags": 5, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2021-10-14T10:15:54.910241", | | "created": "2021-10-14T10:15:54.910241", |
| "description": "Appelstra\u00dfe 9a\r\n__30167 | | "description": "Appelstra\u00dfe 9a\r\n__30167 |
| Hannover__\r\n\r\nTel.: +49 511762-3722 \r\n\r\nFax: +49 511762-4736 | | Hannover__\r\n\r\nTel.: +49 511762-3722 \r\n\r\nFax: +49 511762-4736 |
| \r\n\r\nE-Mail: institut@baustoff.uni-hannover.de | | \r\n\r\nE-Mail: institut@baustoff.uni-hannover.de |
| \r\n\r\nhttps://www.baustoff.uni-hannover.de/\r\n", | | \r\n\r\nhttps://www.baustoff.uni-hannover.de/\r\n", |
| "id": "c5907647-9127-4a15-819b-9d61da4e3ec6", | | "id": "c5907647-9127-4a15-819b-9d61da4e3ec6", |
| "image_url": "", | | "image_url": "", |
| "is_organization": true, | | "is_organization": true, |
| "name": "institut-fur-baustoffe", | | "name": "institut-fur-baustoffe", |
| "state": "active", | | "state": "active", |
| "title": "Institut f\u00fcr Baustoffe", | | "title": "Institut f\u00fcr Baustoffe", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "c5907647-9127-4a15-819b-9d61da4e3ec6", | | "owner_org": "c5907647-9127-4a15-819b-9d61da4e3ec6", |
| "private": false, | | "private": false, |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
| "repository_name": "Leibniz University Hannover", | | "repository_name": "Leibniz University Hannover", |
| "resources": [ | | "resources": [ |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2022-11-21T12:37:43.012343", | | "created": "2022-11-21T12:37:43.012343", |
| "description": "", | | "description": "", |
| "format": "PNG", | | "format": "PNG", |
| "hash": "", | | "hash": "", |
| "id": "8cb30616-5b24-4028-9c1d-ea250ac8ac84", | | "id": "8cb30616-5b24-4028-9c1d-ea250ac8ac84", |
| "last_modified": "2022-11-21T12:37:42.974381", | | "last_modified": "2022-11-21T12:37:42.974381", |
n | "metadata_modified": "2023-08-04T08:46:26.293491", | n | "metadata_modified": "2024-11-28T12:49:02.664521", |
| "mimetype": "image/png", | | "mimetype": "image/png", |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "ExampleCoarse.png", | | "name": "ExampleCoarse.png", |
| "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", | | "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", |
| "position": 0, | | "position": 0, |
| "resource_type": null, | | "resource_type": null, |
| "size": 4725003, | | "size": 4725003, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| urce/8cb30616-5b24-4028-9c1d-ea250ac8ac84/download/examplecoarse.png", | | urce/8cb30616-5b24-4028-9c1d-ea250ac8ac84/download/examplecoarse.png", |
| "url_type": "" | | "url_type": "" |
| }, | | }, |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2022-11-21T12:37:55.172826", | | "created": "2022-11-21T12:37:55.172826", |
| "description": "", | | "description": "", |
| "format": "PNG", | | "format": "PNG", |
| "hash": "", | | "hash": "", |
| "id": "c56f4298-9663-457f-aaa7-0ba113fec4c9", | | "id": "c56f4298-9663-457f-aaa7-0ba113fec4c9", |
| "last_modified": "2022-11-21T12:37:55.132145", | | "last_modified": "2022-11-21T12:37:55.132145", |
n | "metadata_modified": "2023-08-04T08:46:26.293626", | n | "metadata_modified": "2024-11-28T12:49:02.664668", |
| "mimetype": "image/png", | | "mimetype": "image/png", |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "ExampleFine.png", | | "name": "ExampleFine.png", |
| "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", | | "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", |
| "position": 1, | | "position": 1, |
| "resource_type": null, | | "resource_type": null, |
| "size": 8352660, | | "size": 8352660, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| source/c56f4298-9663-457f-aaa7-0ba113fec4c9/download/examplefine.png", | | source/c56f4298-9663-457f-aaa7-0ba113fec4c9/download/examplefine.png", |
| "url_type": "" | | "url_type": "" |
| }, | | }, |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2022-11-23T10:12:07.222415", | | "created": "2022-11-23T10:12:07.222415", |
| "description": "MD5 Checksum: 9269a3640aa88ef89a73ce1c7d66a463", | | "description": "MD5 Checksum: 9269a3640aa88ef89a73ce1c7d66a463", |
| "format": "ZIP", | | "format": "ZIP", |
| "hash": "", | | "hash": "", |
| "id": "0f3be986-e6fe-481e-844e-544f26249a27", | | "id": "0f3be986-e6fe-481e-844e-544f26249a27", |
| "last_modified": null, | | "last_modified": null, |
n | "metadata_modified": "2023-08-04T08:46:26.293755", | n | "metadata_modified": "2024-11-28T12:49:02.664783", |
| "mimetype": "application/zip", | | "mimetype": "application/zip", |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "CoarseAggregateData.zip", | | "name": "CoarseAggregateData.zip", |
| "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", | | "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", |
| "position": 2, | | "position": 2, |
| "resource_type": null, | | "resource_type": null, |
| "size": null, | | "size": null, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| aset/upload/users/baustoff/deep_granulometry/CoarseAggregateData.zip", | | aset/upload/users/baustoff/deep_granulometry/CoarseAggregateData.zip", |
| "url_type": "" | | "url_type": "" |
| }, | | }, |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2022-11-23T10:12:42.500872", | | "created": "2022-11-23T10:12:42.500872", |
| "description": "MD5 Checksum: 2972810aa13c8c06a01afb5fbe1ace8b", | | "description": "MD5 Checksum: 2972810aa13c8c06a01afb5fbe1ace8b", |
| "format": "ZIP", | | "format": "ZIP", |
| "hash": "", | | "hash": "", |
| "id": "8a491282-309f-4f1b-9b44-49da330a128a", | | "id": "8a491282-309f-4f1b-9b44-49da330a128a", |
| "last_modified": null, | | "last_modified": null, |
n | "metadata_modified": "2023-08-04T08:46:26.293870", | n | "metadata_modified": "2024-11-28T12:49:02.664892", |
| "mimetype": "application/zip", | | "mimetype": "application/zip", |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "FineAggregateData.zip", | | "name": "FineAggregateData.zip", |
| "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", | | "package_id": "1bf33963-a111-48fb-a662-9c6fa9b248af", |
| "position": 3, | | "position": 3, |
| "resource_type": null, | | "resource_type": null, |
| "size": null, | | "size": null, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| ataset/upload/users/baustoff/deep_granulometry/FineAggregateData.zip", | | ataset/upload/users/baustoff/deep_granulometry/FineAggregateData.zip", |
| "url_type": "" | | "url_type": "" |
| } | | } |
| ], | | ], |
| "services_used_list": "", | | "services_used_list": "", |
| "source_metadata_created": "2022-11-21T11:37:21.373303", | | "source_metadata_created": "2022-11-21T11:37:21.373303", |
t | "source_metadata_modified": "2023-04-27T19:11:53.801633", | t | "source_metadata_modified": "2024-01-03T14:33:50.433020", |
| "state": "active", | | "state": "active", |
| "tags": [ | | "tags": [ |
| { | | { |
| "display_name": "CNN", | | "display_name": "CNN", |
| "id": "66ec0da0-d205-4a39-90c6-bae7e7b1cbd6", | | "id": "66ec0da0-d205-4a39-90c6-bae7e7b1cbd6", |
| "name": "CNN", | | "name": "CNN", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "Concrete Aggregate", | | "display_name": "Concrete Aggregate", |
| "id": "6baffc3f-c876-4adb-ae93-2a2ea8d221e1", | | "id": "6baffc3f-c876-4adb-ae93-2a2ea8d221e1", |
| "name": "Concrete Aggregate", | | "name": "Concrete Aggregate", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "computer vision", | | "display_name": "computer vision", |
| "id": "f650b4e3-9955-49b0-ba7b-2d302a990978", | | "id": "f650b4e3-9955-49b0-ba7b-2d302a990978", |
| "name": "computer vision", | | "name": "computer vision", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "deep learning", | | "display_name": "deep learning", |
| "id": "19e41883-3799-4184-9e0e-26c95795b119", | | "id": "19e41883-3799-4184-9e0e-26c95795b119", |
| "name": "deep learning", | | "name": "deep learning", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "granulometry", | | "display_name": "granulometry", |
| "id": "4593ebf2-7d9c-4c6c-bbdc-694f0fc0f59f", | | "id": "4593ebf2-7d9c-4c6c-bbdc-694f0fc0f59f", |
| "name": "granulometry", | | "name": "granulometry", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| } | | } |
| ], | | ], |
| "terms_of_usage": "Yes", | | "terms_of_usage": "Yes", |
| "title": "Deep Granulometry", | | "title": "Deep Granulometry", |
| "type": "vdataset", | | "type": "vdataset", |
| "url": "https://data.uni-hannover.de/dataset/deep-granulometry", | | "url": "https://data.uni-hannover.de/dataset/deep-granulometry", |
| "version": "" | | "version": "" |
| } | | } |