Changes
On August 4, 2023 at 9:04:10 AM UTC, admin:
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Kn\u00f6ller, Marvin", | 2 | "author": "Kn\u00f6ller, Marvin", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1307", | 5 | "doi": "10.35097/1307", | ||
6 | "doi_date_published": "2023", | 6 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "groups": [], | 9 | "groups": [], | ||
10 | "id": "0e6fde0a-5089-4d13-9d18-b542a45d9b23", | 10 | "id": "0e6fde0a-5089-4d13-9d18-b542a45d9b23", | ||
11 | "isopen": false, | 11 | "isopen": false, | ||
12 | "license_id": "CC BY-NC-SA 4.0 | 12 | "license_id": "CC BY-NC-SA 4.0 | ||
13 | Attribution-NonCommercial-ShareAlike", | 13 | Attribution-NonCommercial-ShareAlike", | ||
14 | "license_title": "CC BY-NC-SA 4.0 | 14 | "license_title": "CC BY-NC-SA 4.0 | ||
15 | Attribution-NonCommercial-ShareAlike", | 15 | Attribution-NonCommercial-ShareAlike", | ||
16 | "metadata_created": "2023-08-04T08:50:30.559544", | 16 | "metadata_created": "2023-08-04T08:50:30.559544", | ||
t | 17 | "metadata_modified": "2023-08-04T08:53:28.457681", | t | 17 | "metadata_modified": "2023-08-04T09:04:10.114085", |
18 | "name": "rdr-doi-10-35097-1307", | 18 | "name": "rdr-doi-10-35097-1307", | ||
19 | "notes": "TechnicalRemarks: This is a guide to generate the figures | 19 | "notes": "TechnicalRemarks: This is a guide to generate the figures | ||
20 | that have been used in the work\r\n\r\n> Inverse medium scattering | 20 | that have been used in the work\r\n\r\n> Inverse medium scattering | ||
21 | for a nonlinear Helmholtz equation\r\n\r\nby Roland Griesmaier, Marvin | 21 | for a nonlinear Helmholtz equation\r\n\r\nby Roland Griesmaier, Marvin | ||
22 | Kn\u00f6ller and Rainer Mandel.\r\n\r\nYou find all needed Matlab | 22 | Kn\u00f6ller and Rainer Mandel.\r\n\r\nYou find all needed Matlab | ||
23 | files to generate the figures.\r\n\r\nAn overview:\r\n-evaluategfun_z | 23 | files to generate the figures.\r\n\r\nAn overview:\r\n-evaluategfun_z | ||
24 | is supposed to generate the Herglotz density g, dependent on a | 24 | is supposed to generate the Herglotz density g, dependent on a | ||
25 | possible shift z\\\\in R^2\r\n-Finalplots plots the figures at the end | 25 | possible shift z\\\\in R^2\r\n-Finalplots plots the figures at the end | ||
26 | of the computation\r\n-funhandle_zAbs evaluates the function handle | 26 | of the computation\r\n-funhandle_zAbs evaluates the function handle | ||
27 | corresponding to the factorization method\r\n-funhanlde_zReal | 27 | corresponding to the factorization method\r\n-funhanlde_zReal | ||
28 | evaluates the function handle corresponding to the monotonicity | 28 | evaluates the function handle corresponding to the monotonicity | ||
29 | method\r\n-getc and ToepPhi are used to evaluate the Toeplitz matrix | 29 | method\r\n-getc and ToepPhi are used to evaluate the Toeplitz matrix | ||
30 | in order to evaluate the 2d convolution from the nonlinear Lippmann | 30 | in order to evaluate the 2d convolution from the nonlinear Lippmann | ||
31 | Schwinger equation. Convolution is performed by using the 2d Fourier | 31 | Schwinger equation. Convolution is performed by using the 2d Fourier | ||
32 | transform.\r\n-getUi_z generates incoming Herglotz fields, dependent | 32 | transform.\r\n-getUi_z generates incoming Herglotz fields, dependent | ||
33 | on a possible shift z\\\\in R^2\r\n-mycon is the constraint used in | 33 | on a possible shift z\\\\in R^2\r\n-mycon is the constraint used in | ||
34 | the optimization\r\n-NLHH evaluates the far field given an incoming | 34 | the optimization\r\n-NLHH evaluates the far field given an incoming | ||
35 | field. This function uses a fixed point iteration arising from the | 35 | field. This function uses a fixed point iteration arising from the | ||
36 | nonlinear Lippmann Schwinger equation.\r\n-nonlinear_qh2_scaled gives | 36 | nonlinear Lippmann Schwinger equation.\r\n-nonlinear_qh2_scaled gives | ||
37 | the (scaled) function handle corresponding to a kite made of fused | 37 | the (scaled) function handle corresponding to a kite made of fused | ||
38 | silica.\r\n\r\nThe scripts Numerical_Example_Fac.m and | 38 | silica.\r\n\r\nThe scripts Numerical_Example_Fac.m and | ||
39 | Numerical_Example_Mon.m start the reconstruction of the kite using the | 39 | Numerical_Example_Mon.m start the reconstruction of the kite using the | ||
40 | factorization and the monotonicity method, respectively.\r\n\r\nThe | 40 | factorization and the monotonicity method, respectively.\r\n\r\nThe | ||
41 | computations have been carried out on a Cluster using 32 | 41 | computations have been carried out on a Cluster using 32 | ||
42 | Cores.\r\nGenerating an example from scratch takes approximately 4 | 42 | Cores.\r\nGenerating an example from scratch takes approximately 4 | ||
43 | days.\r\nComputations have been carried out using the Matlab 2018a | 43 | days.\r\nComputations have been carried out using the Matlab 2018a | ||
44 | version.\r\n\r\nThe code uses parallelization from the Matlab | 44 | version.\r\n\r\nThe code uses parallelization from the Matlab | ||
45 | Parallelization Toolbox.\r\nThe code uses optimization from the Matlab | 45 | Parallelization Toolbox.\r\nThe code uses optimization from the Matlab | ||
46 | Optimization Toolbox.", | 46 | Optimization Toolbox.", | ||
47 | "num_resources": 0, | 47 | "num_resources": 0, | ||
48 | "num_tags": 5, | 48 | "num_tags": 5, | ||
49 | "orcid": "", | 49 | "orcid": "", | ||
50 | "organization": { | 50 | "organization": { | ||
51 | "approval_status": "approved", | 51 | "approval_status": "approved", | ||
52 | "created": "2023-01-12T13:30:23.238233", | 52 | "created": "2023-01-12T13:30:23.238233", | ||
53 | "description": "RADAR (Research Data Repository) is a | 53 | "description": "RADAR (Research Data Repository) is a | ||
54 | cross-disciplinary repository for archiving and publishing research | 54 | cross-disciplinary repository for archiving and publishing research | ||
55 | data from completed scientific studies and projects. The focus is on | 55 | data from completed scientific studies and projects. The focus is on | ||
56 | research data from subjects that do not yet have their own | 56 | research data from subjects that do not yet have their own | ||
57 | discipline-specific infrastructures for research data management. ", | 57 | discipline-specific infrastructures for research data management. ", | ||
58 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 58 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
59 | "image_url": "radar-logo.svg", | 59 | "image_url": "radar-logo.svg", | ||
60 | "is_organization": true, | 60 | "is_organization": true, | ||
61 | "name": "radar", | 61 | "name": "radar", | ||
62 | "state": "active", | 62 | "state": "active", | ||
63 | "title": "RADAR", | 63 | "title": "RADAR", | ||
64 | "type": "organization" | 64 | "type": "organization" | ||
65 | }, | 65 | }, | ||
66 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 66 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
67 | "private": false, | 67 | "private": false, | ||
68 | "production_year": "2022", | 68 | "production_year": "2022", | ||
69 | "publication_year": "2023", | 69 | "publication_year": "2023", | ||
70 | "publishers": [ | 70 | "publishers": [ | ||
71 | { | 71 | { | ||
72 | "publisher": "Karlsruhe Institute of Technology" | 72 | "publisher": "Karlsruhe Institute of Technology" | ||
73 | } | 73 | } | ||
74 | ], | 74 | ], | ||
75 | "relationships_as_object": [], | 75 | "relationships_as_object": [], | ||
76 | "relationships_as_subject": [], | 76 | "relationships_as_subject": [], | ||
77 | "repository_name": "RADAR (Research Data Repository)", | 77 | "repository_name": "RADAR (Research Data Repository)", | ||
78 | "resources": [], | 78 | "resources": [], | ||
79 | "services_used_list": "", | 79 | "services_used_list": "", | ||
80 | "source_metadata_created": "2023", | 80 | "source_metadata_created": "2023", | ||
81 | "source_metadata_modified": "", | 81 | "source_metadata_modified": "", | ||
82 | "state": "active", | 82 | "state": "active", | ||
83 | "subject_areas": [ | 83 | "subject_areas": [ | ||
84 | { | 84 | { | ||
85 | "subject_area_additional": "", | 85 | "subject_area_additional": "", | ||
86 | "subject_area_name": "Mathematics" | 86 | "subject_area_name": "Mathematics" | ||
87 | } | 87 | } | ||
88 | ], | 88 | ], | ||
89 | "tags": [ | 89 | "tags": [ | ||
90 | { | 90 | { | ||
91 | "display_name": "factorization method", | 91 | "display_name": "factorization method", | ||
92 | "id": "f390c0d0-d28f-444e-b517-2f1ac6243f88", | 92 | "id": "f390c0d0-d28f-444e-b517-2f1ac6243f88", | ||
93 | "name": "factorization method", | 93 | "name": "factorization method", | ||
94 | "state": "active", | 94 | "state": "active", | ||
95 | "vocabulary_id": null | 95 | "vocabulary_id": null | ||
96 | }, | 96 | }, | ||
97 | { | 97 | { | ||
98 | "display_name": "inverse scattering", | 98 | "display_name": "inverse scattering", | ||
99 | "id": "9869b2ea-853a-4f0f-b511-7d2e20ff2f42", | 99 | "id": "9869b2ea-853a-4f0f-b511-7d2e20ff2f42", | ||
100 | "name": "inverse scattering", | 100 | "name": "inverse scattering", | ||
101 | "state": "active", | 101 | "state": "active", | ||
102 | "vocabulary_id": null | 102 | "vocabulary_id": null | ||
103 | }, | 103 | }, | ||
104 | { | 104 | { | ||
105 | "display_name": "monotonicity method", | 105 | "display_name": "monotonicity method", | ||
106 | "id": "e7415b22-6448-4aa3-87f4-833ef2b03ec5", | 106 | "id": "e7415b22-6448-4aa3-87f4-833ef2b03ec5", | ||
107 | "name": "monotonicity method", | 107 | "name": "monotonicity method", | ||
108 | "state": "active", | 108 | "state": "active", | ||
109 | "vocabulary_id": null | 109 | "vocabulary_id": null | ||
110 | }, | 110 | }, | ||
111 | { | 111 | { | ||
112 | "display_name": "nonlinear Helmholtz equation", | 112 | "display_name": "nonlinear Helmholtz equation", | ||
113 | "id": "0bd08d6b-1d3a-45c3-a734-da6111185a54", | 113 | "id": "0bd08d6b-1d3a-45c3-a734-da6111185a54", | ||
114 | "name": "nonlinear Helmholtz equation", | 114 | "name": "nonlinear Helmholtz equation", | ||
115 | "state": "active", | 115 | "state": "active", | ||
116 | "vocabulary_id": null | 116 | "vocabulary_id": null | ||
117 | }, | 117 | }, | ||
118 | { | 118 | { | ||
119 | "display_name": "uniqueness", | 119 | "display_name": "uniqueness", | ||
120 | "id": "10a08f6c-59f1-4f89-8dfd-6f1709bcb163", | 120 | "id": "10a08f6c-59f1-4f89-8dfd-6f1709bcb163", | ||
121 | "name": "uniqueness", | 121 | "name": "uniqueness", | ||
122 | "state": "active", | 122 | "state": "active", | ||
123 | "vocabulary_id": null | 123 | "vocabulary_id": null | ||
124 | } | 124 | } | ||
125 | ], | 125 | ], | ||
126 | "title": "Numerical experiments to \"inverse medium scattering for a | 126 | "title": "Numerical experiments to \"inverse medium scattering for a | ||
127 | nonlinear helmholtz equation\"", | 127 | nonlinear helmholtz equation\"", | ||
128 | "type": "vdataset", | 128 | "type": "vdataset", | ||
129 | "url": "https://doi.org/10.35097/1307" | 129 | "url": "https://doi.org/10.35097/1307" | ||
130 | } | 130 | } |