Changes
On August 4, 2023 at 8:52:04 AM UTC,
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Kant, Paul", | 2 | "author": "Kant, Paul", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1440", | 5 | "doi": "10.35097/1440", | ||
6 | "doi_date_published": "2023", | 6 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "groups": [], | 9 | "groups": [], | ||
10 | "id": "a1f004cd-8792-4ce5-8821-17f27171644a", | 10 | "id": "a1f004cd-8792-4ce5-8821-17f27171644a", | ||
11 | "isopen": false, | 11 | "isopen": false, | ||
12 | "license_id": "CC BY-NC-SA 4.0 | 12 | "license_id": "CC BY-NC-SA 4.0 | ||
13 | Attribution-NonCommercial-ShareAlike", | 13 | Attribution-NonCommercial-ShareAlike", | ||
14 | "license_title": "CC BY-NC-SA 4.0 | 14 | "license_title": "CC BY-NC-SA 4.0 | ||
15 | Attribution-NonCommercial-ShareAlike", | 15 | Attribution-NonCommercial-ShareAlike", | ||
16 | "metadata_created": "2023-08-04T08:50:48.102547", | 16 | "metadata_created": "2023-08-04T08:50:48.102547", | ||
t | 17 | "metadata_modified": "2023-08-04T08:50:48.102553", | t | 17 | "metadata_modified": "2023-08-04T08:52:04.322728", |
18 | "name": "rdr-doi-10-35097-1440", | 18 | "name": "rdr-doi-10-35097-1440", | ||
19 | "notes": "Abstract: Sonnengest\u00fctzte Prozesse inspirieren | 19 | "notes": "Abstract: Sonnengest\u00fctzte Prozesse inspirieren | ||
20 | Hoffnungen und Tr\u00e4ume von einer nachhaltigen Zukunft auf dem | 20 | Hoffnungen und Tr\u00e4ume von einer nachhaltigen Zukunft auf dem | ||
21 | Planeten Erde. Das Design und die Auslegung von Fotoreaktoren f\u00fcr | 21 | Planeten Erde. Das Design und die Auslegung von Fotoreaktoren f\u00fcr | ||
22 | spezifische Reaktionssysteme ist jedoch eine komplexe Aufgabe an der | 22 | spezifische Reaktionssysteme ist jedoch eine komplexe Aufgabe an der | ||
23 | Schnittstelle zwischen Materialwissenschaften und Engineering. Die | 23 | Schnittstelle zwischen Materialwissenschaften und Engineering. Die | ||
24 | Zielstellung des Auslegungsprozesses ist es dabei stets einen | 24 | Zielstellung des Auslegungsprozesses ist es dabei stets einen | ||
25 | Fotoreaktor zu entwerfen, der sowohl optimale Betriebsbedingungen als | 25 | Fotoreaktor zu entwerfen, der sowohl optimale Betriebsbedingungen als | ||
26 | auch eine hohe Strahlungstransporteffizienz sicherstellt. Der | 26 | auch eine hohe Strahlungstransporteffizienz sicherstellt. Der | ||
27 | Ver\u00f6ffentlichte Datensatz begleitet die Ver\u00f6ffentlichung | 27 | Ver\u00f6ffentlichte Datensatz begleitet die Ver\u00f6ffentlichung | ||
28 | \u2018Low-cost photoreactors for highly photon/energy-efficient | 28 | \u2018Low-cost photoreactors for highly photon/energy-efficient | ||
29 | solar-driven synthesis\u2019, DOI: XYZ. Die genannte | 29 | solar-driven synthesis\u2019, DOI: XYZ. Die genannte | ||
30 | Ver\u00f6ffentlichung f\u00fchrt dabei reflektionsbasierte | 30 | Ver\u00f6ffentlichung f\u00fchrt dabei reflektionsbasierte | ||
31 | multipassagen Fotoreaktoren und eine Optimierungsstrategie f\u00fcr | 31 | multipassagen Fotoreaktoren und eine Optimierungsstrategie f\u00fcr | ||
32 | solche Fotoreaktoren ein. Das Manuskript unterstreicht die | 32 | solche Fotoreaktoren ein. Das Manuskript unterstreicht die | ||
33 | Validit\u00e4t des Konzepts durch die experimentelle Demonstration | 33 | Validit\u00e4t des Konzepts durch die experimentelle Demonstration | ||
34 | einer Fotoreduktion von Kaliumeisen(III)oxalat und leitet zuletzt eine | 34 | einer Fotoreduktion von Kaliumeisen(III)oxalat und leitet zuletzt eine | ||
35 | Designrichtlinie ab, die die Adaption des Fotoreaktors auf andere | 35 | Designrichtlinie ab, die die Adaption des Fotoreaktors auf andere | ||
36 | Reaktionssysteme erleichtert. Der ver\u00f6ffentlichte Datensatz | 36 | Reaktionssysteme erleichtert. Der ver\u00f6ffentlichte Datensatz | ||
37 | umfasst die verwendete optische Simulationsumgebung, den Code des | 37 | umfasst die verwendete optische Simulationsumgebung, den Code des | ||
38 | Optimierungsalgorithmus, Simulationsergebnisse und experimentelle | 38 | Optimierungsalgorithmus, Simulationsergebnisse und experimentelle | ||
39 | Ergebnisse, die im referenzierten Manuskript dargestellt | 39 | Ergebnisse, die im referenzierten Manuskript dargestellt | ||
40 | werden.\r\nAbstract: Solar-driven processes inspire hopes and dreams | 40 | werden.\r\nAbstract: Solar-driven processes inspire hopes and dreams | ||
41 | of a sustainable future on planet earth. However, the design and | 41 | of a sustainable future on planet earth. However, the design and | ||
42 | optimization of photoreactors for specific reaction systems is a | 42 | optimization of photoreactors for specific reaction systems is a | ||
43 | complex task at the interface of material science and engineering. The | 43 | complex task at the interface of material science and engineering. The | ||
44 | objective of the design process is, thereby, to derive a photoreactor | 44 | objective of the design process is, thereby, to derive a photoreactor | ||
45 | that provides both optimal operating conditions and a high efficiency | 45 | that provides both optimal operating conditions and a high efficiency | ||
46 | of radiation transport. The published data set accompanies the | 46 | of radiation transport. The published data set accompanies the | ||
47 | publication \u2018Low-cost photoreactors for highly | 47 | publication \u2018Low-cost photoreactors for highly | ||
48 | photon/energy-efficient solar-driven synthesis\u2019, DOI: XYZ. The | 48 | photon/energy-efficient solar-driven synthesis\u2019, DOI: XYZ. The | ||
49 | referenced manuscript introduces reflective multi-pass photoreactors, | 49 | referenced manuscript introduces reflective multi-pass photoreactors, | ||
50 | an optimization strategy for such photoreactors, underlines the | 50 | an optimization strategy for such photoreactors, underlines the | ||
51 | validity of the chosen approach by the experimental demonstration of a | 51 | validity of the chosen approach by the experimental demonstration of a | ||
52 | potassium iron(III) oxalate photoreduction, and lastly derives a | 52 | potassium iron(III) oxalate photoreduction, and lastly derives a | ||
53 | concise design guideline that supports the adaptation to other | 53 | concise design guideline that supports the adaptation to other | ||
54 | reaction systems. The published dataset comprises the optical | 54 | reaction systems. The published dataset comprises the optical | ||
55 | simulation environment, the optimization algorithm code, the | 55 | simulation environment, the optimization algorithm code, the | ||
56 | simulation results, and experimental data presented in the | 56 | simulation results, and experimental data presented in the | ||
57 | manuscript.\r\nTechnicalRemarks: The two folders comprise data of the | 57 | manuscript.\r\nTechnicalRemarks: The two folders comprise data of the | ||
58 | photoreactor optimization and analysis reported in the linked article. | 58 | photoreactor optimization and analysis reported in the linked article. | ||
59 | The folder with the photoreactor optimization data comprises code and | 59 | The folder with the photoreactor optimization data comprises code and | ||
60 | simulation results. The folder with the photoreactor analysis | 60 | simulation results. The folder with the photoreactor analysis | ||
61 | comprises simulation results and experimental results in the | 61 | comprises simulation results and experimental results in the | ||
62 | corresponding subfolders. The code is written in MATLAB. Reading and | 62 | corresponding subfolders. The code is written in MATLAB. Reading and | ||
63 | modifying the code requires a working MATLAB environment. Running the | 63 | modifying the code requires a working MATLAB environment. Running the | ||
64 | code may further require the MATLAB global optimization toolbox and | 64 | code may further require the MATLAB global optimization toolbox and | ||
65 | the MATLAB parallel computing toolbox.", | 65 | the MATLAB parallel computing toolbox.", | ||
66 | "num_resources": 0, | 66 | "num_resources": 0, | ||
67 | "num_tags": 3, | 67 | "num_tags": 3, | ||
68 | "orcid": "0000-0002-1512-3041", | 68 | "orcid": "0000-0002-1512-3041", | ||
69 | "organization": { | 69 | "organization": { | ||
70 | "approval_status": "approved", | 70 | "approval_status": "approved", | ||
71 | "created": "2023-01-12T13:30:23.238233", | 71 | "created": "2023-01-12T13:30:23.238233", | ||
72 | "description": "RADAR (Research Data Repository) is a | 72 | "description": "RADAR (Research Data Repository) is a | ||
73 | cross-disciplinary repository for archiving and publishing research | 73 | cross-disciplinary repository for archiving and publishing research | ||
74 | data from completed scientific studies and projects. The focus is on | 74 | data from completed scientific studies and projects. The focus is on | ||
75 | research data from subjects that do not yet have their own | 75 | research data from subjects that do not yet have their own | ||
76 | discipline-specific infrastructures for research data management. ", | 76 | discipline-specific infrastructures for research data management. ", | ||
77 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 77 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
78 | "image_url": "radar-logo.svg", | 78 | "image_url": "radar-logo.svg", | ||
79 | "is_organization": true, | 79 | "is_organization": true, | ||
80 | "name": "radar", | 80 | "name": "radar", | ||
81 | "state": "active", | 81 | "state": "active", | ||
82 | "title": "RADAR", | 82 | "title": "RADAR", | ||
83 | "type": "organization" | 83 | "type": "organization" | ||
84 | }, | 84 | }, | ||
85 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 85 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
86 | "private": false, | 86 | "private": false, | ||
87 | "production_year": "2022", | 87 | "production_year": "2022", | ||
88 | "publication_year": "2023", | 88 | "publication_year": "2023", | ||
89 | "publishers": [ | 89 | "publishers": [ | ||
90 | { | 90 | { | ||
91 | "publisher": "Karlsruhe Institute of Technology" | 91 | "publisher": "Karlsruhe Institute of Technology" | ||
92 | } | 92 | } | ||
93 | ], | 93 | ], | ||
94 | "relationships_as_object": [], | 94 | "relationships_as_object": [], | ||
95 | "relationships_as_subject": [], | 95 | "relationships_as_subject": [], | ||
96 | "repository_name": "RADAR (Research Data Repository)", | 96 | "repository_name": "RADAR (Research Data Repository)", | ||
97 | "resources": [], | 97 | "resources": [], | ||
98 | "services_used_list": "", | 98 | "services_used_list": "", | ||
99 | "source_metadata_created": "2023", | 99 | "source_metadata_created": "2023", | ||
100 | "source_metadata_modified": "", | 100 | "source_metadata_modified": "", | ||
101 | "state": "active", | 101 | "state": "active", | ||
102 | "subject_areas": [ | 102 | "subject_areas": [ | ||
103 | { | 103 | { | ||
104 | "subject_area_additional": "", | 104 | "subject_area_additional": "", | ||
105 | "subject_area_name": "Engineering" | 105 | "subject_area_name": "Engineering" | ||
106 | } | 106 | } | ||
107 | ], | 107 | ], | ||
108 | "tags": [ | 108 | "tags": [ | ||
109 | { | 109 | { | ||
110 | "display_name": "Monte Carlo Ray Tracing", | 110 | "display_name": "Monte Carlo Ray Tracing", | ||
111 | "id": "bac85c22-1a29-422b-adcc-67df50cbe4e1", | 111 | "id": "bac85c22-1a29-422b-adcc-67df50cbe4e1", | ||
112 | "name": "Monte Carlo Ray Tracing", | 112 | "name": "Monte Carlo Ray Tracing", | ||
113 | "state": "active", | 113 | "state": "active", | ||
114 | "vocabulary_id": null | 114 | "vocabulary_id": null | ||
115 | }, | 115 | }, | ||
116 | { | 116 | { | ||
117 | "display_name": "Photoreactor analysis", | 117 | "display_name": "Photoreactor analysis", | ||
118 | "id": "ddef014c-10bb-42d5-b630-b5194775b1c9", | 118 | "id": "ddef014c-10bb-42d5-b630-b5194775b1c9", | ||
119 | "name": "Photoreactor analysis", | 119 | "name": "Photoreactor analysis", | ||
120 | "state": "active", | 120 | "state": "active", | ||
121 | "vocabulary_id": null | 121 | "vocabulary_id": null | ||
122 | }, | 122 | }, | ||
123 | { | 123 | { | ||
124 | "display_name": "Photoreactor optimization", | 124 | "display_name": "Photoreactor optimization", | ||
125 | "id": "7193c658-ec47-43a3-abb3-c534f7c1b467", | 125 | "id": "7193c658-ec47-43a3-abb3-c534f7c1b467", | ||
126 | "name": "Photoreactor optimization", | 126 | "name": "Photoreactor optimization", | ||
127 | "state": "active", | 127 | "state": "active", | ||
128 | "vocabulary_id": null | 128 | "vocabulary_id": null | ||
129 | } | 129 | } | ||
130 | ], | 130 | ], | ||
131 | "title": "Low-cost photoreactors for highly photon/energy-efficient | 131 | "title": "Low-cost photoreactors for highly photon/energy-efficient | ||
132 | solar-driven synthesis: code, simulation data, and experimental data", | 132 | solar-driven synthesis: code, simulation data, and experimental data", | ||
133 | "type": "vdataset", | 133 | "type": "vdataset", | ||
134 | "url": "https://doi.org/10.35097/1440" | 134 | "url": "https://doi.org/10.35097/1440" | ||
135 | } | 135 | } |