Changes
On August 4, 2023 at 8:49:49 AM UTC, admin:
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Capek, Daniel ", | 2 | "author": "Capek, Daniel ", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.48606/15", | 5 | "doi": "10.48606/15", | ||
6 | "doi_date_published": "2022", | 6 | "doi_date_published": "2022", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "extra_authors": [ | 9 | "extra_authors": [ | ||
10 | { | 10 | { | ||
11 | "extra_author": "Kurzbach, Anica", | 11 | "extra_author": "Kurzbach, Anica", | ||
12 | "orcid": "0000-0003-1531-3088" | 12 | "orcid": "0000-0003-1531-3088" | ||
13 | }, | 13 | }, | ||
14 | { | 14 | { | ||
15 | "extra_author": "Safroshkin, Matvey", | 15 | "extra_author": "Safroshkin, Matvey", | ||
16 | "orcid": "0000-0003-3955-5081" | 16 | "orcid": "0000-0003-3955-5081" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Morales-Navarrete, Hernan ", | 19 | "extra_author": "Morales-Navarrete, Hernan ", | ||
20 | "orcid": "0000-0002-9578-2556" | 20 | "orcid": "0000-0002-9578-2556" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Arutyunov, Grigory", | 23 | "extra_author": "Arutyunov, Grigory", | ||
24 | "orcid": "0000-0002-4372-9155" | 24 | "orcid": "0000-0002-4372-9155" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Toulany, Nikan", | 27 | "extra_author": "Toulany, Nikan", | ||
28 | "orcid": "0000-0003-3505-7325" | 28 | "orcid": "0000-0003-3505-7325" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [], | 31 | "groups": [], | ||
32 | "id": "ee5bef8f-48ca-499b-9f7b-411e6b236ffd", | 32 | "id": "ee5bef8f-48ca-499b-9f7b-411e6b236ffd", | ||
33 | "isopen": false, | 33 | "isopen": false, | ||
34 | "license_id": "CC BY 4.0 Attribution", | 34 | "license_id": "CC BY 4.0 Attribution", | ||
35 | "license_title": "CC BY 4.0 Attribution", | 35 | "license_title": "CC BY 4.0 Attribution", | ||
36 | "metadata_created": "2023-01-12T13:30:59.121962", | 36 | "metadata_created": "2023-01-12T13:30:59.121962", | ||
n | 37 | "metadata_modified": "2023-01-12T13:30:59.121967", | n | 37 | "metadata_modified": "2023-08-04T08:49:49.140493", |
38 | "name": "rdr-doi-10-48606-15", | 38 | "name": "rdr-doi-10-48606-15", | ||
39 | "notes": "Abstract: This is the data repository of the training and | 39 | "notes": "Abstract: This is the data repository of the training and | ||
40 | test data sets for EmbryoNet. The data is structured in multiple | 40 | test data sets for EmbryoNet. The data is structured in multiple | ||
41 | packages. EmbryoNet_Models (DOI 10.48606/31) contains the trained | 41 | packages. EmbryoNet_Models (DOI 10.48606/31) contains the trained | ||
42 | neural networks, the other packages are imaging data. All data are | 42 | neural networks, the other packages are imaging data. All data are | ||
43 | brightfield timelapse images of one or multiple embryos recorded in | 43 | brightfield timelapse images of one or multiple embryos recorded in | ||
44 | multiwell plates in either the Acquifer Imaging Machine or the Keyence | 44 | multiwell plates in either the Acquifer Imaging Machine or the Keyence | ||
45 | BZ-X810 microscope. The microscope type is included in the name of the | 45 | BZ-X810 microscope. The microscope type is included in the name of the | ||
46 | archive, e.g. BMP_Acquifer.zip. Training data images are accompanied | 46 | archive, e.g. BMP_Acquifer.zip. Training data images are accompanied | ||
47 | by json-files with the classification from human annotators, while | 47 | by json-files with the classification from human annotators, while | ||
48 | test data sets also have the jsons of EmbryoNet's classification. The | 48 | test data sets also have the jsons of EmbryoNet's classification. The | ||
49 | dataset EmbryoNet_Image-data: Stickleback 1 (DOI 10.48606/32) contains | 49 | dataset EmbryoNet_Image-data: Stickleback 1 (DOI 10.48606/32) contains | ||
50 | training data for the Stickleback version of EmbryoNet, and | 50 | training data for the Stickleback version of EmbryoNet, and | ||
51 | EmbryoNet_Test-data: Stickleback (DOI 10.48606/33) contains the | 51 | EmbryoNet_Test-data: Stickleback (DOI 10.48606/33) contains the | ||
52 | evaluation data. EmbryoNet_Training-data: Medaka (DOI 10.48606/35) and | 52 | evaluation data. EmbryoNet_Training-data: Medaka (DOI 10.48606/35) and | ||
53 | EmbryoNet_Test-data: Medaka (DOI 10.48606/34) contain the respective | 53 | EmbryoNet_Test-data: Medaka (DOI 10.48606/34) contain the respective | ||
54 | data for Medaka. The other packages are zebrafish images. The two | 54 | data for Medaka. The other packages are zebrafish images. The two | ||
55 | archives named EmbryoNet_Test-data 1&2 (DOI: 10.48606/29 & | 55 | archives named EmbryoNet_Test-data 1&2 (DOI: 10.48606/29 & | ||
56 | 10.48606/30) are the zebrafish test data sets. The zebrafish training | 56 | 10.48606/30) are the zebrafish test data sets. The zebrafish training | ||
57 | data sets are named after the signaling molecule: | 57 | data sets are named after the signaling molecule: | ||
58 | EmbryoNet_training-data: BMP (DOI 10.48606/18), | 58 | EmbryoNet_training-data: BMP (DOI 10.48606/18), | ||
59 | EmbryoNet_training-data: Retinoic acid (DOI 10.48606/20), | 59 | EmbryoNet_training-data: Retinoic acid (DOI 10.48606/20), | ||
60 | EmbryoNet_training-data: Wnt (DOI 10.48606/21), | 60 | EmbryoNet_training-data: Wnt (DOI 10.48606/21), | ||
61 | EmbryoNet_training-data: FGF (DOI 10.48606/22), | 61 | EmbryoNet_training-data: FGF (DOI 10.48606/22), | ||
62 | EmbryoNet_training-data: Nodal (DOI 10.48606/23), | 62 | EmbryoNet_training-data: Nodal (DOI 10.48606/23), | ||
63 | EmbryoNet_training-data: Shh (DOI 10.48606/25) and | 63 | EmbryoNet_training-data: Shh (DOI 10.48606/25) and | ||
64 | EmbryoNet_training-data: PCP (DOI 10.48606/26). | 64 | EmbryoNet_training-data: PCP (DOI 10.48606/26). | ||
65 | EmbryoNet_training-data: WT (DOI 10.48606/16) contains the training | 65 | EmbryoNet_training-data: WT (DOI 10.48606/16) contains the training | ||
66 | data of untreated embryos. The datasets EmbryoNet_Training-data: | 66 | data of untreated embryos. The datasets EmbryoNet_Training-data: | ||
67 | Severities - Keyence (DOI 10.48606/28) and EmbryoNet_Training-data: | 67 | Severities - Keyence (DOI 10.48606/28) and EmbryoNet_Training-data: | ||
68 | Severities - Acquifer (DOI 10.48606/27) contain the training and | 68 | Severities - Acquifer (DOI 10.48606/27) contain the training and | ||
69 | evaluation data of the Severities experiments with different inhibitor | 69 | evaluation data of the Severities experiments with different inhibitor | ||
70 | concentrations. Inside a zip file the data is arranged in experiment | 70 | concentrations. Inside a zip file the data is arranged in experiment | ||
71 | folders, named in the format DATE_Molecule_concentration, e.g. | 71 | folders, named in the format DATE_Molecule_concentration, e.g. | ||
72 | 201222_FGF_10uM. Inside these experiment folders the data is organized | 72 | 201222_FGF_10uM. Inside these experiment folders the data is organized | ||
73 | after multiwell plate or microscope positions, A001-D006 for the | 73 | after multiwell plate or microscope positions, A001-D006 for the | ||
74 | Acquifer data and XY01-XY24 for the Keyence data.", | 74 | Acquifer data and XY01-XY24 for the Keyence data.", | ||
75 | "num_resources": 0, | 75 | "num_resources": 0, | ||
76 | "num_tags": 9, | 76 | "num_tags": 9, | ||
77 | "orcid": "0000-0001-5199-9940", | 77 | "orcid": "0000-0001-5199-9940", | ||
78 | "organization": { | 78 | "organization": { | ||
79 | "approval_status": "approved", | 79 | "approval_status": "approved", | ||
80 | "created": "2023-01-12T13:30:23.238233", | 80 | "created": "2023-01-12T13:30:23.238233", | ||
81 | "description": "RADAR (Research Data Repository) is a | 81 | "description": "RADAR (Research Data Repository) is a | ||
82 | cross-disciplinary repository for archiving and publishing research | 82 | cross-disciplinary repository for archiving and publishing research | ||
83 | data from completed scientific studies and projects. The focus is on | 83 | data from completed scientific studies and projects. The focus is on | ||
84 | research data from subjects that do not yet have their own | 84 | research data from subjects that do not yet have their own | ||
85 | discipline-specific infrastructures for research data management. ", | 85 | discipline-specific infrastructures for research data management. ", | ||
86 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 86 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
87 | "image_url": "radar-logo.svg", | 87 | "image_url": "radar-logo.svg", | ||
88 | "is_organization": true, | 88 | "is_organization": true, | ||
89 | "name": "radar", | 89 | "name": "radar", | ||
90 | "state": "active", | 90 | "state": "active", | ||
91 | "title": "RADAR", | 91 | "title": "RADAR", | ||
92 | "type": "organization" | 92 | "type": "organization" | ||
93 | }, | 93 | }, | ||
94 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 94 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
95 | "private": false, | 95 | "private": false, | ||
96 | "production_year": "2022", | 96 | "production_year": "2022", | ||
97 | "publication_year": "2022", | 97 | "publication_year": "2022", | ||
98 | "publishers": [ | 98 | "publishers": [ | ||
99 | { | 99 | { | ||
100 | "publisher": "Universit\u00e4t Konstanz" | 100 | "publisher": "Universit\u00e4t Konstanz" | ||
101 | } | 101 | } | ||
102 | ], | 102 | ], | ||
n | n | 103 | "related_identifiers": [ | ||
104 | { | ||||
105 | "identifier": "10.48606/16", | ||||
106 | "identifier_type": "DOI", | ||||
107 | "relation_type": "HasPart" | ||||
108 | }, | ||||
109 | { | ||||
110 | "identifier": "10.48606/18", | ||||
111 | "identifier_type": "DOI", | ||||
112 | "relation_type": "HasPart" | ||||
113 | }, | ||||
114 | { | ||||
115 | "identifier": "10.48606/20", | ||||
116 | "identifier_type": "DOI", | ||||
117 | "relation_type": "HasPart" | ||||
118 | }, | ||||
119 | { | ||||
120 | "identifier": "10.48606/21", | ||||
121 | "identifier_type": "DOI", | ||||
122 | "relation_type": "HasPart" | ||||
123 | }, | ||||
124 | { | ||||
125 | "identifier": "10.48606/22", | ||||
126 | "identifier_type": "DOI", | ||||
127 | "relation_type": "HasPart" | ||||
128 | }, | ||||
129 | { | ||||
130 | "identifier": "10.48606/23", | ||||
131 | "identifier_type": "DOI", | ||||
132 | "relation_type": "HasPart" | ||||
133 | }, | ||||
134 | { | ||||
135 | "identifier": "10.48606/25", | ||||
136 | "identifier_type": "DOI", | ||||
137 | "relation_type": "HasPart" | ||||
138 | }, | ||||
139 | { | ||||
140 | "identifier": "10.48606/26", | ||||
141 | "identifier_type": "DOI", | ||||
142 | "relation_type": "HasPart" | ||||
143 | }, | ||||
144 | { | ||||
145 | "identifier": "10.48606/27", | ||||
146 | "identifier_type": "DOI", | ||||
147 | "relation_type": "HasPart" | ||||
148 | }, | ||||
149 | { | ||||
150 | "identifier": "10.48606/28", | ||||
151 | "identifier_type": "DOI", | ||||
152 | "relation_type": "HasPart" | ||||
153 | }, | ||||
154 | { | ||||
155 | "identifier": "10.48606/29", | ||||
156 | "identifier_type": "DOI", | ||||
157 | "relation_type": "HasPart" | ||||
158 | }, | ||||
159 | { | ||||
160 | "identifier": "10.48606/30", | ||||
161 | "identifier_type": "DOI", | ||||
162 | "relation_type": "HasPart" | ||||
163 | }, | ||||
164 | { | ||||
165 | "identifier": "10.48606/31", | ||||
166 | "identifier_type": "DOI", | ||||
167 | "relation_type": "HasPart" | ||||
168 | }, | ||||
169 | { | ||||
170 | "identifier": "10.48606/32", | ||||
171 | "identifier_type": "DOI", | ||||
172 | "relation_type": "HasPart" | ||||
173 | }, | ||||
174 | { | ||||
175 | "identifier": "10.48606/33", | ||||
176 | "identifier_type": "DOI", | ||||
177 | "relation_type": "HasPart" | ||||
178 | }, | ||||
179 | { | ||||
180 | "identifier": "10.48606/34", | ||||
181 | "identifier_type": "DOI", | ||||
182 | "relation_type": "HasPart" | ||||
183 | }, | ||||
184 | { | ||||
185 | "identifier": "10.48606/35", | ||||
186 | "identifier_type": "DOI", | ||||
187 | "relation_type": "HasPart" | ||||
188 | }, | ||||
189 | { | ||||
190 | "identifier": "10.48606/37 ", | ||||
191 | "identifier_type": "DOI", | ||||
192 | "relation_type": "HasPart" | ||||
193 | }, | ||||
194 | { | ||||
195 | "identifier": "10.48606/38 ", | ||||
196 | "identifier_type": "DOI", | ||||
197 | "relation_type": "HasPart" | ||||
198 | }, | ||||
199 | { | ||||
200 | "identifier": "10.48606/41 ", | ||||
201 | "identifier_type": "DOI", | ||||
202 | "relation_type": "HasPart" | ||||
203 | }, | ||||
204 | { | ||||
205 | "identifier": "10.48606/53", | ||||
206 | "identifier_type": "DOI", | ||||
207 | "relation_type": "HasPart" | ||||
208 | }, | ||||
209 | { | ||||
210 | "identifier": "10.48606/55", | ||||
211 | "identifier_type": "DOI", | ||||
212 | "relation_type": "HasPart" | ||||
213 | } | ||||
214 | ], | ||||
103 | "relationships_as_object": [], | 215 | "relationships_as_object": [], | ||
104 | "relationships_as_subject": [], | 216 | "relationships_as_subject": [], | ||
105 | "repository_name": "RADAR (Research Data Repository)", | 217 | "repository_name": "RADAR (Research Data Repository)", | ||
106 | "resource_type": "Dataset - Overview of the EmbryoNet datapackages", | 218 | "resource_type": "Dataset - Overview of the EmbryoNet datapackages", | ||
107 | "resources": [], | 219 | "resources": [], | ||
t | t | 220 | "services_used_list": "", | ||
108 | "source_metadata_created": "2022", | 221 | "source_metadata_created": "2022", | ||
109 | "source_metadata_modified": "", | 222 | "source_metadata_modified": "", | ||
110 | "state": "active", | 223 | "state": "active", | ||
111 | "subject_areas": [ | 224 | "subject_areas": [ | ||
112 | { | 225 | { | ||
113 | "subject_area_additional": "", | 226 | "subject_area_additional": "", | ||
114 | "subject_area_name": "Biology" | 227 | "subject_area_name": "Biology" | ||
115 | } | 228 | } | ||
116 | ], | 229 | ], | ||
117 | "tags": [ | 230 | "tags": [ | ||
118 | { | 231 | { | ||
119 | "display_name": "cell signaling", | 232 | "display_name": "cell signaling", | ||
120 | "id": "ef90b71c-a2d0-44f4-b8eb-42461f6ea2e1", | 233 | "id": "ef90b71c-a2d0-44f4-b8eb-42461f6ea2e1", | ||
121 | "name": "cell signaling", | 234 | "name": "cell signaling", | ||
122 | "state": "active", | 235 | "state": "active", | ||
123 | "vocabulary_id": null | 236 | "vocabulary_id": null | ||
124 | }, | 237 | }, | ||
125 | { | 238 | { | ||
126 | "display_name": "development", | 239 | "display_name": "development", | ||
127 | "id": "293b4641-9e2e-44df-b7b1-46de625283f6", | 240 | "id": "293b4641-9e2e-44df-b7b1-46de625283f6", | ||
128 | "name": "development", | 241 | "name": "development", | ||
129 | "state": "active", | 242 | "state": "active", | ||
130 | "vocabulary_id": null | 243 | "vocabulary_id": null | ||
131 | }, | 244 | }, | ||
132 | { | 245 | { | ||
133 | "display_name": "high-throughput", | 246 | "display_name": "high-throughput", | ||
134 | "id": "4c7004f2-f511-4233-af6a-3c2f8674670b", | 247 | "id": "4c7004f2-f511-4233-af6a-3c2f8674670b", | ||
135 | "name": "high-throughput", | 248 | "name": "high-throughput", | ||
136 | "state": "active", | 249 | "state": "active", | ||
137 | "vocabulary_id": null | 250 | "vocabulary_id": null | ||
138 | }, | 251 | }, | ||
139 | { | 252 | { | ||
140 | "display_name": "machine learning", | 253 | "display_name": "machine learning", | ||
141 | "id": "9e42784b-6ee7-47e8-a69a-28b8c510212b", | 254 | "id": "9e42784b-6ee7-47e8-a69a-28b8c510212b", | ||
142 | "name": "machine learning", | 255 | "name": "machine learning", | ||
143 | "state": "active", | 256 | "state": "active", | ||
144 | "vocabulary_id": null | 257 | "vocabulary_id": null | ||
145 | }, | 258 | }, | ||
146 | { | 259 | { | ||
147 | "display_name": "medaka", | 260 | "display_name": "medaka", | ||
148 | "id": "1b034b8b-5fcb-43b6-b966-7bafed3da9d3", | 261 | "id": "1b034b8b-5fcb-43b6-b966-7bafed3da9d3", | ||
149 | "name": "medaka", | 262 | "name": "medaka", | ||
150 | "state": "active", | 263 | "state": "active", | ||
151 | "vocabulary_id": null | 264 | "vocabulary_id": null | ||
152 | }, | 265 | }, | ||
153 | { | 266 | { | ||
154 | "display_name": "phenomic screen", | 267 | "display_name": "phenomic screen", | ||
155 | "id": "31edf0b5-461e-46a9-b43a-0314b5fa9eb7", | 268 | "id": "31edf0b5-461e-46a9-b43a-0314b5fa9eb7", | ||
156 | "name": "phenomic screen", | 269 | "name": "phenomic screen", | ||
157 | "state": "active", | 270 | "state": "active", | ||
158 | "vocabulary_id": null | 271 | "vocabulary_id": null | ||
159 | }, | 272 | }, | ||
160 | { | 273 | { | ||
161 | "display_name": "phenotypes", | 274 | "display_name": "phenotypes", | ||
162 | "id": "1fc768c3-022c-4042-8042-0b90932489f1", | 275 | "id": "1fc768c3-022c-4042-8042-0b90932489f1", | ||
163 | "name": "phenotypes", | 276 | "name": "phenotypes", | ||
164 | "state": "active", | 277 | "state": "active", | ||
165 | "vocabulary_id": null | 278 | "vocabulary_id": null | ||
166 | }, | 279 | }, | ||
167 | { | 280 | { | ||
168 | "display_name": "stickleback", | 281 | "display_name": "stickleback", | ||
169 | "id": "23e173f1-fdeb-4119-993a-07208d3dc60e", | 282 | "id": "23e173f1-fdeb-4119-993a-07208d3dc60e", | ||
170 | "name": "stickleback", | 283 | "name": "stickleback", | ||
171 | "state": "active", | 284 | "state": "active", | ||
172 | "vocabulary_id": null | 285 | "vocabulary_id": null | ||
173 | }, | 286 | }, | ||
174 | { | 287 | { | ||
175 | "display_name": "zebrafish", | 288 | "display_name": "zebrafish", | ||
176 | "id": "98db8ebb-7bdf-40cb-adc7-4b6ad2ed20f7", | 289 | "id": "98db8ebb-7bdf-40cb-adc7-4b6ad2ed20f7", | ||
177 | "name": "zebrafish", | 290 | "name": "zebrafish", | ||
178 | "state": "active", | 291 | "state": "active", | ||
179 | "vocabulary_id": null | 292 | "vocabulary_id": null | ||
180 | } | 293 | } | ||
181 | ], | 294 | ], | ||
182 | "title": "Datasets for \"embryonet: using deep learning to link | 295 | "title": "Datasets for \"embryonet: using deep learning to link | ||
183 | embryonic phenotypes to signaling pathways\"", | 296 | embryonic phenotypes to signaling pathways\"", | ||
184 | "type": "vdataset", | 297 | "type": "vdataset", | ||
185 | "url": "https://doi.org/10.48606/15" | 298 | "url": "https://doi.org/10.48606/15" | ||
186 | } | 299 | } |