Changes
On August 4, 2023 at 8:46:49 AM UTC, admin:
-
Set author of Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model to Daniel Borcherding (previously Daniel Borcherding, Holger Frahm)
-
Removed field
datastore_active
from resource Mathematica.zip in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 1 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 2 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource preprint arXiv:1808.05808 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 3 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 8 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 6 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 7 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 5 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model -
Removed field
datastore_active
from resource Data for Fig. 4 of J. Phys. A 51 (2018) 495002 in Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a one-dimensional fermion model
f | 1 | { | f | 1 | { |
n | 2 | "author": "Daniel Borcherding, Holger Frahm", | n | 2 | "author": "Daniel Borcherding", |
3 | "author_email": "frahm@itp.uni-hannover.de", | 3 | "author_email": "frahm@itp.uni-hannover.de", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.25835/0042110", | 5 | "doi": "10.25835/0042110", | ||
6 | "doi_date_published": "2019-04-03", | 6 | "doi_date_published": "2019-04-03", | ||
7 | "doi_publisher": "LUIS", | 7 | "doi_publisher": "LUIS", | ||
8 | "doi_status": "true", | 8 | "doi_status": "true", | ||
9 | "domain": "https://data.uni-hannover.de", | 9 | "domain": "https://data.uni-hannover.de", | ||
n | n | 10 | "extra_authors": [ | ||
11 | { | ||||
12 | "extra_author": " Holger Frahm" | ||||
13 | } | ||||
14 | ], | ||||
10 | "groups": [], | 15 | "groups": [], | ||
11 | "have_copyright": "Yes", | 16 | "have_copyright": "Yes", | ||
12 | "id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 17 | "id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
13 | "isopen": false, | 18 | "isopen": false, | ||
14 | "license_id": "CC-BY-3.0", | 19 | "license_id": "CC-BY-3.0", | ||
15 | "license_title": "CC-BY-3.0", | 20 | "license_title": "CC-BY-3.0", | ||
16 | "maintainer": "Daniel Borcherding", | 21 | "maintainer": "Daniel Borcherding", | ||
17 | "maintainer_email": "", | 22 | "maintainer_email": "", | ||
18 | "metadata_created": "2021-10-14T10:16:07.896702", | 23 | "metadata_created": "2021-10-14T10:16:07.896702", | ||
n | 19 | "metadata_modified": "2021-10-14T10:16:07.896707", | n | 24 | "metadata_modified": "2023-08-04T08:46:49.291862", |
20 | "name": "luh-su3k-non-abelian-anyons-thermodynamics", | 25 | "name": "luh-su3k-non-abelian-anyons-thermodynamics", | ||
21 | "notes": "Plots, data and Mathematica notebooks for the | 26 | "notes": "Plots, data and Mathematica notebooks for the | ||
22 | paper:\r\n\r\nDaniel Borcherding and Holger Frahm (2018): Condensation | 27 | paper:\r\n\r\nDaniel Borcherding and Holger Frahm (2018): Condensation | ||
23 | of non-Abelian SU(3)Nf anyons in a one-dimensional fermion model, J. | 28 | of non-Abelian SU(3)Nf anyons in a one-dimensional fermion model, J. | ||
24 | Phys. A: Math. Theor. 51 495002 \r\nDOI: 10.1088/1751-8121/aaea9b | 29 | Phys. A: Math. Theor. 51 495002 \r\nDOI: 10.1088/1751-8121/aaea9b | ||
25 | \r\narXiv: 1808.05808\r\n\r\nand the doctoral thesis:\r\n\r\nDaniel | 30 | \r\narXiv: 1808.05808\r\n\r\nand the doctoral thesis:\r\n\r\nDaniel | ||
26 | Borcherding (2018): Non-Abelian quasi-particles in electronic systems. | 31 | Borcherding (2018): Non-Abelian quasi-particles in electronic systems. | ||
27 | Gottfried Wilhelm Leibniz Universit\u00e4t Hannover, Diss.\r\nDOI: | 32 | Gottfried Wilhelm Leibniz Universit\u00e4t Hannover, Diss.\r\nDOI: | ||
28 | https://doi.org/10.15488/4280", | 33 | https://doi.org/10.15488/4280", | ||
29 | "num_resources": 10, | 34 | "num_resources": 10, | ||
30 | "num_tags": 2, | 35 | "num_tags": 2, | ||
31 | "organization": { | 36 | "organization": { | ||
32 | "approval_status": "approved", | 37 | "approval_status": "approved", | ||
33 | "created": "2021-10-14T10:15:55.193734", | 38 | "created": "2021-10-14T10:15:55.193734", | ||
34 | "description": "https://www.itp.uni-hannover.de/agfrahm.html", | 39 | "description": "https://www.itp.uni-hannover.de/agfrahm.html", | ||
35 | "id": "5bb3488c-e223-4283-a276-5697b2c526e9", | 40 | "id": "5bb3488c-e223-4283-a276-5697b2c526e9", | ||
36 | "image_url": "", | 41 | "image_url": "", | ||
37 | "is_organization": true, | 42 | "is_organization": true, | ||
38 | "name": "ag-frahm", | 43 | "name": "ag-frahm", | ||
39 | "state": "active", | 44 | "state": "active", | ||
40 | "title": "AG Frahm", | 45 | "title": "AG Frahm", | ||
41 | "type": "organization" | 46 | "type": "organization" | ||
42 | }, | 47 | }, | ||
43 | "owner_org": "5bb3488c-e223-4283-a276-5697b2c526e9", | 48 | "owner_org": "5bb3488c-e223-4283-a276-5697b2c526e9", | ||
44 | "private": false, | 49 | "private": false, | ||
45 | "relationships_as_object": [], | 50 | "relationships_as_object": [], | ||
46 | "relationships_as_subject": [], | 51 | "relationships_as_subject": [], | ||
47 | "repository_name": "Leibniz University Hannover", | 52 | "repository_name": "Leibniz University Hannover", | ||
48 | "resources": [ | 53 | "resources": [ | ||
49 | { | 54 | { | ||
50 | "cache_last_updated": null, | 55 | "cache_last_updated": null, | ||
51 | "cache_url": null, | 56 | "cache_url": null, | ||
52 | "created": "2019-06-27T09:35:59.327591", | 57 | "created": "2019-06-27T09:35:59.327591", | ||
n | 53 | "datastore_active": false, | n | ||
54 | "description": "\"Condensation of non-Abelian SU(3)Nf anyons in | 58 | "description": "\"Condensation of non-Abelian SU(3)Nf anyons in | ||
55 | a one-dimensional fermion model\", Daniel Borcherding, Holger Frahm", | 59 | a one-dimensional fermion model\", Daniel Borcherding, Holger Frahm", | ||
56 | "format": "", | 60 | "format": "", | ||
57 | "hash": "", | 61 | "hash": "", | ||
58 | "id": "098a489d-489a-4f38-9981-1a4946df8bfa", | 62 | "id": "098a489d-489a-4f38-9981-1a4946df8bfa", | ||
59 | "last_modified": null, | 63 | "last_modified": null, | ||
n | 60 | "metadata_modified": "2021-10-14T10:16:07.881297", | n | 64 | "metadata_modified": "2023-08-04T08:46:49.296069", |
61 | "mimetype": null, | 65 | "mimetype": null, | ||
62 | "mimetype_inner": null, | 66 | "mimetype_inner": null, | ||
63 | "name": "preprint arXiv:1808.05808", | 67 | "name": "preprint arXiv:1808.05808", | ||
64 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 68 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
65 | "position": 0, | 69 | "position": 0, | ||
66 | "resource_type": null, | 70 | "resource_type": null, | ||
n | 67 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
68 | "size": null, | 71 | "size": null, | ||
69 | "state": "active", | 72 | "state": "active", | ||
70 | "url": "https://arxiv.org/abs/1808.05808", | 73 | "url": "https://arxiv.org/abs/1808.05808", | ||
71 | "url_type": "" | 74 | "url_type": "" | ||
72 | }, | 75 | }, | ||
73 | { | 76 | { | ||
74 | "cache_last_updated": null, | 77 | "cache_last_updated": null, | ||
75 | "cache_url": null, | 78 | "cache_url": null, | ||
76 | "created": "2019-03-18T13:59:47.497362", | 79 | "created": "2019-03-18T13:59:47.497362", | ||
n | 77 | "datastore_active": false, | n | ||
78 | "description": "The energy gap of the elementary excitations | 80 | "description": "The energy gap of the elementary excitations | ||
79 | (and Fermi energy of quarks in the condensed phase, respectively) | 81 | (and Fermi energy of quarks in the condensed phase, respectively) | ||
80 | $\\epsilon^{(m)}_j(0)$ obtained from the numerical solution of (3.2) | 82 | $\\epsilon^{(m)}_j(0)$ obtained from the numerical solution of (3.2) | ||
81 | as a function of the field $H_1$ for $p_0=2+1/3$ at zero temperature | 83 | as a function of the field $H_1$ for $p_0=2+1/3$ at zero temperature | ||
82 | and field $H_2=0$ (gaps on level $m=1$ ($2$) are displayed in black | 84 | and field $H_2=0$ (gaps on level $m=1$ ($2$) are displayed in black | ||
83 | (red)). Note that in this case the high energy quark and the low | 85 | (red)). Note that in this case the high energy quark and the low | ||
84 | energy antiquark levels are twofold degenerate.\r\n For $Z_1H_1 = | 86 | energy antiquark levels are twofold degenerate.\r\n For $Z_1H_1 = | ||
85 | M_0$ the quark gap ($\\epsilon^{(1)}_{j_0}(0)$) closes and the system | 87 | M_0$ the quark gap ($\\epsilon^{(1)}_{j_0}(0)$) closes and the system | ||
86 | forms a collective state of these objects. In this phase the | 88 | forms a collective state of these objects. In this phase the | ||
87 | degeneracy of the auxiliary modes is lifted. Increasing the field to | 89 | degeneracy of the auxiliary modes is lifted. Increasing the field to | ||
88 | $Z_1H_1 \\gg M_0$ the gaps of the antiquarks | 90 | $Z_1H_1 \\gg M_0$ the gaps of the antiquarks | ||
89 | ($\\epsilon^{(2)}_{j_0}(0)$ and $\\epsilon^{(2)}_{\\tilde{j}_0}(0)$) | 91 | ($\\epsilon^{(2)}_{j_0}(0)$ and $\\epsilon^{(2)}_{\\tilde{j}_0}(0)$) | ||
90 | close. For small fields the low lying auxiliary modes are clearly | 92 | close. For small fields the low lying auxiliary modes are clearly | ||
91 | separated from the spectrum of solitons and breathers.", | 93 | separated from the spectrum of solitons and breathers.", | ||
92 | "format": "ZIP", | 94 | "format": "ZIP", | ||
93 | "hash": "", | 95 | "hash": "", | ||
94 | "id": "41e4b4a2-fa35-43ac-b998-ecbfc6300bdf", | 96 | "id": "41e4b4a2-fa35-43ac-b998-ecbfc6300bdf", | ||
95 | "last_modified": "2019-03-18T13:59:47.437887", | 97 | "last_modified": "2019-03-18T13:59:47.437887", | ||
n | 96 | "metadata_modified": "2021-10-14T10:16:07.882590", | n | 98 | "metadata_modified": "2023-08-04T08:46:49.296203", |
97 | "mimetype": "application/zip", | 99 | "mimetype": "application/zip", | ||
98 | "mimetype_inner": null, | 100 | "mimetype_inner": null, | ||
99 | "name": "Data for Fig. 1 of J. Phys. A 51 (2018) 495002", | 101 | "name": "Data for Fig. 1 of J. Phys. A 51 (2018) 495002", | ||
100 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 102 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
101 | "position": 1, | 103 | "position": 1, | ||
102 | "resource_type": null, | 104 | "resource_type": null, | ||
n | 103 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
104 | "size": 113869, | 105 | "size": 113869, | ||
105 | "state": "active", | 106 | "state": "active", | ||
106 | "url": | 107 | "url": | ||
107 | urce/41e4b4a2-fa35-43ac-b998-ecbfc6300bdf/download/spectrum1_2_3.zip", | 108 | urce/41e4b4a2-fa35-43ac-b998-ecbfc6300bdf/download/spectrum1_2_3.zip", | ||
108 | "url_type": "" | 109 | "url_type": "" | ||
109 | }, | 110 | }, | ||
110 | { | 111 | { | ||
111 | "cache_last_updated": null, | 112 | "cache_last_updated": null, | ||
112 | "cache_url": null, | 113 | "cache_url": null, | ||
113 | "created": "2019-03-18T14:00:14.169214", | 114 | "created": "2019-03-18T14:00:14.169214", | ||
n | 114 | "datastore_active": false, | n | ||
115 | "description": "Same as Figure 1 but for magnetic fields | 115 | "description": "Same as Figure 1 but for magnetic fields | ||
116 | $H_1\\equiv H_2$. In this case the elementary excitations for $m=1$ | 116 | $H_1\\equiv H_2$. In this case the elementary excitations for $m=1$ | ||
117 | and $2$ are degenerate.", | 117 | and $2$ are degenerate.", | ||
118 | "format": "ZIP", | 118 | "format": "ZIP", | ||
119 | "hash": "", | 119 | "hash": "", | ||
120 | "id": "61383ad0-cb26-4231-ad3a-37a508987c8c", | 120 | "id": "61383ad0-cb26-4231-ad3a-37a508987c8c", | ||
121 | "last_modified": "2019-03-18T14:00:14.109434", | 121 | "last_modified": "2019-03-18T14:00:14.109434", | ||
n | 122 | "metadata_modified": "2021-10-14T10:16:07.883770", | n | 122 | "metadata_modified": "2023-08-04T08:46:49.296312", |
123 | "mimetype": "application/zip", | 123 | "mimetype": "application/zip", | ||
124 | "mimetype_inner": null, | 124 | "mimetype_inner": null, | ||
125 | "name": "Data for Fig. 2 of J. Phys. A 51 (2018) 495002", | 125 | "name": "Data for Fig. 2 of J. Phys. A 51 (2018) 495002", | ||
126 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 126 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
127 | "position": 2, | 127 | "position": 2, | ||
128 | "resource_type": null, | 128 | "resource_type": null, | ||
n | 129 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
130 | "size": 44274, | 129 | "size": 44274, | ||
131 | "state": "active", | 130 | "state": "active", | ||
132 | "url": | 131 | "url": | ||
133 | urce/61383ad0-cb26-4231-ad3a-37a508987c8c/download/spectrum2_2_3.zip", | 132 | urce/61383ad0-cb26-4231-ad3a-37a508987c8c/download/spectrum2_2_3.zip", | ||
134 | "url_type": "" | 133 | "url_type": "" | ||
135 | }, | 134 | }, | ||
136 | { | 135 | { | ||
137 | "cache_last_updated": null, | 136 | "cache_last_updated": null, | ||
138 | "cache_url": null, | 137 | "cache_url": null, | ||
139 | "created": "2019-03-18T13:58:12.193397", | 138 | "created": "2019-03-18T13:58:12.193397", | ||
n | 140 | "datastore_active": false, | n | ||
141 | "description": "Fermi velocities of the quarks and first level | 139 | "description": "Fermi velocities of the quarks and first level | ||
142 | $SU(3)$ parafermion modes as a function of the field $Z_1H_1>M_0$ for | 140 | $SU(3)$ parafermion modes as a function of the field $Z_1H_1>M_0$ for | ||
143 | $p_0=2+1/3$, $H_2\\equiv 0$ at zero temperature. For large fields, | 141 | $p_0=2+1/3$, $H_2\\equiv 0$ at zero temperature. For large fields, | ||
144 | $H_1>H_{1,\\delta}$, both Fermi velocities approach $1$ leading to the | 142 | $H_1>H_{1,\\delta}$, both Fermi velocities approach $1$ leading to the | ||
145 | asymptotic result for the low temperature entropy (3.18).", | 143 | asymptotic result for the low temperature entropy (3.18).", | ||
146 | "format": "ZIP", | 144 | "format": "ZIP", | ||
147 | "hash": "", | 145 | "hash": "", | ||
148 | "id": "d2be6396-ee24-4c8d-941c-480d83b460f9", | 146 | "id": "d2be6396-ee24-4c8d-941c-480d83b460f9", | ||
149 | "last_modified": "2019-03-18T13:58:12.145924", | 147 | "last_modified": "2019-03-18T13:58:12.145924", | ||
n | 150 | "metadata_modified": "2021-10-14T10:16:07.884943", | n | 148 | "metadata_modified": "2023-08-04T08:46:49.296416", |
151 | "mimetype": "application/zip", | 149 | "mimetype": "application/zip", | ||
152 | "mimetype_inner": null, | 150 | "mimetype_inner": null, | ||
153 | "name": "Data for Fig. 3 of J. Phys. A 51 (2018) 495002", | 151 | "name": "Data for Fig. 3 of J. Phys. A 51 (2018) 495002", | ||
154 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 152 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
155 | "position": 3, | 153 | "position": 3, | ||
156 | "resource_type": null, | 154 | "resource_type": null, | ||
n | 157 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
158 | "size": 9666, | 155 | "size": 9666, | ||
159 | "state": "active", | 156 | "state": "active", | ||
160 | "url": | 157 | "url": | ||
161 | d2be6396-ee24-4c8d-941c-480d83b460f9/download/fermivelocity1_2_3.zip", | 158 | d2be6396-ee24-4c8d-941c-480d83b460f9/download/fermivelocity1_2_3.zip", | ||
162 | "url_type": "" | 159 | "url_type": "" | ||
163 | }, | 160 | }, | ||
164 | { | 161 | { | ||
165 | "cache_last_updated": null, | 162 | "cache_last_updated": null, | ||
166 | "cache_url": null, | 163 | "cache_url": null, | ||
167 | "created": "2019-03-18T13:57:03.839649", | 164 | "created": "2019-03-18T13:57:03.839649", | ||
n | 168 | "datastore_active": false, | n | ||
169 | "description": "Entropy obtained from numerical solution of the | 165 | "description": "Entropy obtained from numerical solution of the | ||
170 | TBA equations (3.2) for $p_0=2+1/3$ and $H_2\\equiv 0$ as a function | 166 | TBA equations (3.2) for $p_0=2+1/3$ and $H_2\\equiv 0$ as a function | ||
171 | of the field $(Z_1H_1/M_0$ for $T=0.01M_0$. For fields large compared | 167 | of the field $(Z_1H_1/M_0$ for $T=0.01M_0$. For fields large compared | ||
172 | to the soliton mass, $Z_1H_1\\gg M_0$, the entropy approaches the | 168 | to the soliton mass, $Z_1H_1\\gg M_0$, the entropy approaches the | ||
173 | expected analytical value (3.18) for a field theory with a free | 169 | expected analytical value (3.18) for a field theory with a free | ||
174 | bosonic sector and a $Z_{SU(3)_{N_f=2}}/Z_{SU(2)_{N_f=2}}$ parafermion | 170 | bosonic sector and a $Z_{SU(3)_{N_f=2}}/Z_{SU(2)_{N_f=2}}$ parafermion | ||
175 | sector propagating with velocities $v^{(1)}_{\\text{quark}}$ and | 171 | sector propagating with velocities $v^{(1)}_{\\text{quark}}$ and | ||
176 | $v^{(1)}_{pf}$, respectively (full red line). For magnetic fields | 172 | $v^{(1)}_{pf}$, respectively (full red line). For magnetic fields | ||
177 | $Z_1H_1<M_0$ and temperature $T\\ll M_0$ the entropy is that of a | 173 | $Z_1H_1<M_0$ and temperature $T\\ll M_0$ the entropy is that of a | ||
178 | dilute gas of non-interacting quasi-particles with degenerate internal | 174 | dilute gas of non-interacting quasi-particles with degenerate internal | ||
179 | degree of freedom due to the anyons.", | 175 | degree of freedom due to the anyons.", | ||
180 | "format": "ZIP", | 176 | "format": "ZIP", | ||
181 | "hash": "", | 177 | "hash": "", | ||
182 | "id": "a6f1ae23-c642-4834-bdfa-3b1ac339e736", | 178 | "id": "a6f1ae23-c642-4834-bdfa-3b1ac339e736", | ||
183 | "last_modified": "2019-03-18T13:57:03.796703", | 179 | "last_modified": "2019-03-18T13:57:03.796703", | ||
n | 184 | "metadata_modified": "2021-10-14T10:16:07.886104", | n | 180 | "metadata_modified": "2023-08-04T08:46:49.296519", |
185 | "mimetype": "application/zip", | 181 | "mimetype": "application/zip", | ||
186 | "mimetype_inner": null, | 182 | "mimetype_inner": null, | ||
187 | "name": "Data for Fig. 4 of J. Phys. A 51 (2018) 495002", | 183 | "name": "Data for Fig. 4 of J. Phys. A 51 (2018) 495002", | ||
188 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 184 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
189 | "position": 4, | 185 | "position": 4, | ||
190 | "resource_type": null, | 186 | "resource_type": null, | ||
n | 191 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
192 | "size": 10552, | 187 | "size": 10552, | ||
193 | "state": "active", | 188 | "state": "active", | ||
194 | "url": | 189 | "url": | ||
195 | ource/a6f1ae23-c642-4834-bdfa-3b1ac339e736/download/entropy1_2_3.zip", | 190 | ource/a6f1ae23-c642-4834-bdfa-3b1ac339e736/download/entropy1_2_3.zip", | ||
196 | "url_type": "" | 191 | "url_type": "" | ||
197 | }, | 192 | }, | ||
198 | { | 193 | { | ||
199 | "cache_last_updated": null, | 194 | "cache_last_updated": null, | ||
200 | "cache_url": null, | 195 | "cache_url": null, | ||
201 | "created": "2019-03-18T13:58:35.318714", | 196 | "created": "2019-03-18T13:58:35.318714", | ||
n | 202 | "datastore_active": false, | n | ||
203 | "description": "Fermi velocities of solitons and $SU(3)$ | 197 | "description": "Fermi velocities of solitons and $SU(3)$ | ||
204 | parafermion modes as a function of the magnetic field $H_1\\equiv H_2 | 198 | parafermion modes as a function of the magnetic field $H_1\\equiv H_2 | ||
205 | >M_0(Z_1+Z_2)$ for $p_0=2+1/3$ at zero temperature. For large fields, | 199 | >M_0(Z_1+Z_2)$ for $p_0=2+1/3$ at zero temperature. For large fields, | ||
206 | $H_m>H_{m,\\delta}$, both Fermi velocities approach $1$ leading to the | 200 | $H_m>H_{m,\\delta}$, both Fermi velocities approach $1$ leading to the | ||
207 | asymptotic result for the low temperature entropy (3.27).", | 201 | asymptotic result for the low temperature entropy (3.27).", | ||
208 | "format": "ZIP", | 202 | "format": "ZIP", | ||
209 | "hash": "", | 203 | "hash": "", | ||
210 | "id": "4ee230fc-3076-483c-8f0a-b23ec059fb5c", | 204 | "id": "4ee230fc-3076-483c-8f0a-b23ec059fb5c", | ||
211 | "last_modified": "2019-03-18T13:58:35.263580", | 205 | "last_modified": "2019-03-18T13:58:35.263580", | ||
n | 212 | "metadata_modified": "2021-10-14T10:16:07.887615", | n | 206 | "metadata_modified": "2023-08-04T08:46:49.296621", |
213 | "mimetype": "application/zip", | 207 | "mimetype": "application/zip", | ||
214 | "mimetype_inner": null, | 208 | "mimetype_inner": null, | ||
215 | "name": "Data for Fig. 5 of J. Phys. A 51 (2018) 495002", | 209 | "name": "Data for Fig. 5 of J. Phys. A 51 (2018) 495002", | ||
216 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 210 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
217 | "position": 5, | 211 | "position": 5, | ||
218 | "resource_type": null, | 212 | "resource_type": null, | ||
n | 219 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
220 | "size": 10162, | 213 | "size": 10162, | ||
221 | "state": "active", | 214 | "state": "active", | ||
222 | "url": | 215 | "url": | ||
223 | 4ee230fc-3076-483c-8f0a-b23ec059fb5c/download/fermivelocity2_2_3.zip", | 216 | 4ee230fc-3076-483c-8f0a-b23ec059fb5c/download/fermivelocity2_2_3.zip", | ||
224 | "url_type": "" | 217 | "url_type": "" | ||
225 | }, | 218 | }, | ||
226 | { | 219 | { | ||
227 | "cache_last_updated": null, | 220 | "cache_last_updated": null, | ||
228 | "cache_url": null, | 221 | "cache_url": null, | ||
229 | "created": "2019-03-18T13:57:26.880477", | 222 | "created": "2019-03-18T13:57:26.880477", | ||
n | 230 | "datastore_active": false, | n | ||
231 | "description": "Same as Fig.~4 but for $H_1\\equiv H_2$. For | 223 | "description": "Same as Fig.~4 but for $H_1\\equiv H_2$. For | ||
232 | fields large compared to the soliton mass, $(Z_1+Z_2)H_1\\gg M_0$, the | 224 | fields large compared to the soliton mass, $(Z_1+Z_2)H_1\\gg M_0$, the | ||
233 | entropy approaches the expected analytical value (3.27) for a field | 225 | entropy approaches the expected analytical value (3.27) for a field | ||
234 | theory with two free bosonic sectors and a $SU(3)$ parafermion sector | 226 | theory with two free bosonic sectors and a $SU(3)$ parafermion sector | ||
235 | propagating with velocities $v_{\\text{quark}}=v_{\\text{antiquark}}$ | 227 | propagating with velocities $v_{\\text{quark}}=v_{\\text{antiquark}}$ | ||
236 | and $v_{pf}$, respectively (full red line). For magnetic fields | 228 | and $v_{pf}$, respectively (full red line). For magnetic fields | ||
237 | $zH<M_0$ and temperature $T\\ll M_0$ the entropy is that of a dilute | 229 | $zH<M_0$ and temperature $T\\ll M_0$ the entropy is that of a dilute | ||
238 | gas of non-interacting quasi-particles with degenerate internal degree | 230 | gas of non-interacting quasi-particles with degenerate internal degree | ||
239 | of freedom due to the $SU(3)_{N_f=2}$ anyons bound to the solitons.", | 231 | of freedom due to the $SU(3)_{N_f=2}$ anyons bound to the solitons.", | ||
240 | "format": "ZIP", | 232 | "format": "ZIP", | ||
241 | "hash": "", | 233 | "hash": "", | ||
242 | "id": "7fdb2708-42ff-4196-9e21-2f8a266443ab", | 234 | "id": "7fdb2708-42ff-4196-9e21-2f8a266443ab", | ||
243 | "last_modified": "2019-03-18T13:57:26.829328", | 235 | "last_modified": "2019-03-18T13:57:26.829328", | ||
n | 244 | "metadata_modified": "2021-10-14T10:16:07.888792", | n | 236 | "metadata_modified": "2023-08-04T08:46:49.296722", |
245 | "mimetype": "application/zip", | 237 | "mimetype": "application/zip", | ||
246 | "mimetype_inner": null, | 238 | "mimetype_inner": null, | ||
247 | "name": "Data for Fig. 6 of J. Phys. A 51 (2018) 495002", | 239 | "name": "Data for Fig. 6 of J. Phys. A 51 (2018) 495002", | ||
248 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 240 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
249 | "position": 6, | 241 | "position": 6, | ||
250 | "resource_type": null, | 242 | "resource_type": null, | ||
n | 251 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
252 | "size": 18450, | 243 | "size": 18450, | ||
253 | "state": "active", | 244 | "state": "active", | ||
254 | "url": | 245 | "url": | ||
255 | ource/7fdb2708-42ff-4196-9e21-2f8a266443ab/download/entropy2_2_3.zip", | 246 | ource/7fdb2708-42ff-4196-9e21-2f8a266443ab/download/entropy2_2_3.zip", | ||
256 | "url_type": "" | 247 | "url_type": "" | ||
257 | }, | 248 | }, | ||
258 | { | 249 | { | ||
259 | "cache_last_updated": null, | 250 | "cache_last_updated": null, | ||
260 | "cache_url": null, | 251 | "cache_url": null, | ||
261 | "created": "2019-03-18T13:57:48.572648", | 252 | "created": "2019-03-18T13:57:48.572648", | ||
n | 262 | "datastore_active": false, | n | ||
263 | "description": "Same as Figure 4 but for fields along the line | 253 | "description": "Same as Figure 4 but for fields along the line | ||
264 | $\\log(Z_2H_2/M_0)\\equiv 0.4\\log(Z_1H_1/M_0)-2.58$. Transitions are | 254 | $\\log(Z_2H_2/M_0)\\equiv 0.4\\log(Z_1H_1/M_0)-2.58$. Transitions are | ||
265 | observed at fields where the quarks and antiquarks condense, i.e.\\ | 255 | observed at fields where the quarks and antiquarks condense, i.e.\\ | ||
266 | from the low density phase of non-interacting anyons into the | 256 | from the low density phase of non-interacting anyons into the | ||
267 | collective state described by the $SU(3)_{N_f=2}/SU(2)_{N_f=2}$ coset | 257 | collective state described by the $SU(3)_{N_f=2}/SU(2)_{N_f=2}$ coset | ||
268 | CFT at and later into a phase whose low energy description is in terms | 258 | CFT at and later into a phase whose low energy description is in terms | ||
269 | of the $SU(3)_{N_f=2}$ WZNW model. The dashed-dotted lines indicate | 259 | of the $SU(3)_{N_f=2}$ WZNW model. The dashed-dotted lines indicate | ||
270 | the corresponding central charges.", | 260 | the corresponding central charges.", | ||
271 | "format": "ZIP", | 261 | "format": "ZIP", | ||
272 | "hash": "", | 262 | "hash": "", | ||
273 | "id": "194dc94f-e4da-4ee1-a415-d57cca27e4df", | 263 | "id": "194dc94f-e4da-4ee1-a415-d57cca27e4df", | ||
274 | "last_modified": "2019-03-18T13:57:48.524548", | 264 | "last_modified": "2019-03-18T13:57:48.524548", | ||
n | 275 | "metadata_modified": "2021-10-14T10:16:07.889934", | n | 265 | "metadata_modified": "2023-08-04T08:46:49.296869", |
276 | "mimetype": "application/zip", | 266 | "mimetype": "application/zip", | ||
277 | "mimetype_inner": null, | 267 | "mimetype_inner": null, | ||
278 | "name": "Data for Fig. 7 of J. Phys. A 51 (2018) 495002", | 268 | "name": "Data for Fig. 7 of J. Phys. A 51 (2018) 495002", | ||
279 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 269 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
280 | "position": 7, | 270 | "position": 7, | ||
281 | "resource_type": null, | 271 | "resource_type": null, | ||
n | 282 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
283 | "size": 10211, | 272 | "size": 10211, | ||
284 | "state": "active", | 273 | "state": "active", | ||
285 | "url": | 274 | "url": | ||
286 | ource/194dc94f-e4da-4ee1-a415-d57cca27e4df/download/entropy3_2_3.zip", | 275 | ource/194dc94f-e4da-4ee1-a415-d57cca27e4df/download/entropy3_2_3.zip", | ||
287 | "url_type": "" | 276 | "url_type": "" | ||
288 | }, | 277 | }, | ||
289 | { | 278 | { | ||
290 | "cache_last_updated": null, | 279 | "cache_last_updated": null, | ||
291 | "cache_url": null, | 280 | "cache_url": null, | ||
292 | "created": "2019-03-18T13:59:24.146825", | 281 | "created": "2019-03-18T13:59:24.146825", | ||
n | 293 | "datastore_active": false, | n | ||
294 | "description": "Contribution of the $SU(3)_{N_f}$ anyons to the | 282 | "description": "Contribution of the $SU(3)_{N_f}$ anyons to the | ||
295 | low temperature properties of the model (2.1): using the criteria | 283 | low temperature properties of the model (2.1): using the criteria | ||
296 | described in the main text the parameter regions are identified using | 284 | described in the main text the parameter regions are identified using | ||
297 | analytical arguments for $T\\to0$ (the actual location of the | 285 | analytical arguments for $T\\to0$ (the actual location of the | ||
298 | boundaries is based on numerical data for $p_0=2+1/3$ and | 286 | boundaries is based on numerical data for $p_0=2+1/3$ and | ||
299 | $T=0.05/M_0$). For small fields (regions I,II) a gas of | 287 | $T=0.05/M_0$). For small fields (regions I,II) a gas of | ||
300 | non-interacting quasi-particles with the anyon as an internal zero | 288 | non-interacting quasi-particles with the anyon as an internal zero | ||
301 | energy degree of freedom bound to them is realized. Here the dashed | 289 | energy degree of freedom bound to them is realized. Here the dashed | ||
302 | line ($H_1\\equiv H_2$ or $\\epsilon^{(1)}_j\\equiv | 290 | line ($H_1\\equiv H_2$ or $\\epsilon^{(1)}_j\\equiv | ||
303 | \\epsilon^{(2)}_j$) indicates the crossover between regions where the | 291 | \\epsilon^{(2)}_j$) indicates the crossover between regions where the | ||
304 | quarks (region I), or antiquarks (region II) dominate the free energy. | 292 | quarks (region I), or antiquarks (region II) dominate the free energy. | ||
305 | In region III the presence of thermally activated solitons with a | 293 | In region III the presence of thermally activated solitons with a | ||
306 | small but finite density lifts the degeneracy of the zero modes. The | 294 | small but finite density lifts the degeneracy of the zero modes. The | ||
307 | collective phases formed by condensed solitons are labelled by the | 295 | collective phases formed by condensed solitons are labelled by the | ||
308 | corresponding CFTs providing the effective description of the low | 296 | corresponding CFTs providing the effective description of the low | ||
309 | energy excitations.", | 297 | energy excitations.", | ||
310 | "format": "ZIP", | 298 | "format": "ZIP", | ||
311 | "hash": "", | 299 | "hash": "", | ||
312 | "id": "1fc158ba-d528-4198-b80c-d99469f90b07", | 300 | "id": "1fc158ba-d528-4198-b80c-d99469f90b07", | ||
313 | "last_modified": "2019-03-18T13:59:24.090803", | 301 | "last_modified": "2019-03-18T13:59:24.090803", | ||
n | 314 | "metadata_modified": "2021-10-14T10:16:07.891073", | n | 302 | "metadata_modified": "2023-08-04T08:46:49.296973", |
315 | "mimetype": "application/zip", | 303 | "mimetype": "application/zip", | ||
316 | "mimetype_inner": null, | 304 | "mimetype_inner": null, | ||
317 | "name": "Data for Fig. 8 of J. Phys. A 51 (2018) 495002", | 305 | "name": "Data for Fig. 8 of J. Phys. A 51 (2018) 495002", | ||
318 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 306 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
319 | "position": 8, | 307 | "position": 8, | ||
320 | "resource_type": null, | 308 | "resource_type": null, | ||
n | 321 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
322 | "size": 174264, | 309 | "size": 174264, | ||
323 | "state": "active", | 310 | "state": "active", | ||
324 | "url": | 311 | "url": | ||
325 | e/1fc158ba-d528-4198-b80c-d99469f90b07/download/phasediagram_2_3.zip", | 312 | e/1fc158ba-d528-4198-b80c-d99469f90b07/download/phasediagram_2_3.zip", | ||
326 | "url_type": "" | 313 | "url_type": "" | ||
327 | }, | 314 | }, | ||
328 | { | 315 | { | ||
329 | "cache_last_updated": null, | 316 | "cache_last_updated": null, | ||
330 | "cache_url": null, | 317 | "cache_url": null, | ||
331 | "created": "2019-03-18T13:58:59.553739", | 318 | "created": "2019-03-18T13:58:59.553739", | ||
n | 332 | "datastore_active": false, | n | ||
333 | "description": "This Mathematica notebook was used for all the | 319 | "description": "This Mathematica notebook was used for all the | ||
334 | numerical computations for the \"Condensation of non-Abelian | 320 | numerical computations for the \"Condensation of non-Abelian | ||
335 | $SU(3)_Nf$ anyons in a one-dimensional fermion model\" | 321 | $SU(3)_Nf$ anyons in a one-dimensional fermion model\" | ||
336 | paper.\r\n\r\nHow to use it:\r\n1) Set an anisotropy parameter.\r\n2) | 322 | paper.\r\n\r\nHow to use it:\r\n1) Set an anisotropy parameter.\r\n2) | ||
337 | Set the range and discretization of the rapidity \\lambda.\r\n3) Run | 323 | Set the range and discretization of the rapidity \\lambda.\r\n3) Run | ||
338 | the \"Compute string\" part. It computes all the allowed strings for | 324 | the \"Compute string\" part. It computes all the allowed strings for | ||
339 | the given anisotropy parameter.\r\n4) Run \"Define kernels\". This | 325 | the given anisotropy parameter.\r\n4) Run \"Define kernels\". This | ||
340 | defines all the kernels of the integral equations for the given | 326 | defines all the kernels of the integral equations for the given | ||
341 | anisotropy parameter.\r\n5) Run \"Numerical Fourier transformation and | 327 | anisotropy parameter.\r\n5) Run \"Numerical Fourier transformation and | ||
342 | useful functions\". This defines all the necessary functions for fast | 328 | useful functions\". This defines all the necessary functions for fast | ||
343 | Fourier transformations.\r\n6) Use the part \"Solving integral | 329 | Fourier transformations.\r\n6) Use the part \"Solving integral | ||
344 | equations by iteration\" to define functions that solve the integral | 330 | equations by iteration\" to define functions that solve the integral | ||
345 | equations of the dressed energies. These differ depending on whether | 331 | equations of the dressed energies. These differ depending on whether | ||
346 | the derivative with respect to the external field or the temperature | 332 | the derivative with respect to the external field or the temperature | ||
347 | are needed.\r\n7) The remaining parts are used to compute specific | 333 | are needed.\r\n7) The remaining parts are used to compute specific | ||
348 | physical quantities of the perturbed SU(3)_Nf WZNW model.\r\n8) Part | 334 | physical quantities of the perturbed SU(3)_Nf WZNW model.\r\n8) Part | ||
349 | \"High temperature asymptotics of SU(3) spin chain\" was used to check | 335 | \"High temperature asymptotics of SU(3) spin chain\" was used to check | ||
350 | whether the correct high-temperature behavior of the entropy is found. | 336 | whether the correct high-temperature behavior of the entropy is found. | ||
351 | For the SU(3) case this showed us that we have not found all solutions | 337 | For the SU(3) case this showed us that we have not found all solutions | ||
352 | of the Bethe equations describing the high temperature behavior of the | 338 | of the Bethe equations describing the high temperature behavior of the | ||
353 | model.", | 339 | model.", | ||
354 | "format": "ZIP", | 340 | "format": "ZIP", | ||
355 | "hash": "", | 341 | "hash": "", | ||
356 | "id": "443fe168-4a60-4b41-bbf7-fa6cfa4080f3", | 342 | "id": "443fe168-4a60-4b41-bbf7-fa6cfa4080f3", | ||
357 | "last_modified": "2019-03-18T13:58:59.494407", | 343 | "last_modified": "2019-03-18T13:58:59.494407", | ||
n | 358 | "metadata_modified": "2021-10-14T10:16:07.892292", | n | 344 | "metadata_modified": "2023-08-04T08:46:49.297075", |
359 | "mimetype": "application/zip", | 345 | "mimetype": "application/zip", | ||
360 | "mimetype_inner": null, | 346 | "mimetype_inner": null, | ||
361 | "name": "Mathematica.zip", | 347 | "name": "Mathematica.zip", | ||
362 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | 348 | "package_id": "78d4bbd5-17e4-4f84-84c2-51cd77a7ab07", | ||
363 | "position": 9, | 349 | "position": 9, | ||
364 | "resource_type": null, | 350 | "resource_type": null, | ||
n | 365 | "revision_id": "3c748201-f869-4b23-869f-bcdb3f3d37cb", | n | ||
366 | "size": 2276674, | 351 | "size": 2276674, | ||
367 | "state": "active", | 352 | "state": "active", | ||
368 | "url": | 353 | "url": | ||
369 | source/443fe168-4a60-4b41-bbf7-fa6cfa4080f3/download/mathematica.zip", | 354 | source/443fe168-4a60-4b41-bbf7-fa6cfa4080f3/download/mathematica.zip", | ||
370 | "url_type": "" | 355 | "url_type": "" | ||
371 | } | 356 | } | ||
372 | ], | 357 | ], | ||
t | t | 358 | "services_used_list": "", | ||
373 | "source_metadata_created": "2019-03-18T13:56:38.586802", | 359 | "source_metadata_created": "2019-03-18T13:56:38.586802", | ||
374 | "source_metadata_modified": "2019-06-27T09:36:21.135067", | 360 | "source_metadata_modified": "2019-06-27T09:36:21.135067", | ||
375 | "state": "active", | 361 | "state": "active", | ||
376 | "tags": [ | 362 | "tags": [ | ||
377 | { | 363 | { | ||
378 | "display_name": "Bethe ansatz", | 364 | "display_name": "Bethe ansatz", | ||
379 | "id": "236a2df8-c82e-46cb-9c3a-797353c800c3", | 365 | "id": "236a2df8-c82e-46cb-9c3a-797353c800c3", | ||
380 | "name": "Bethe ansatz", | 366 | "name": "Bethe ansatz", | ||
381 | "state": "active", | 367 | "state": "active", | ||
382 | "vocabulary_id": null | 368 | "vocabulary_id": null | ||
383 | }, | 369 | }, | ||
384 | { | 370 | { | ||
385 | "display_name": "non-Abelian anyons", | 371 | "display_name": "non-Abelian anyons", | ||
386 | "id": "e19ab70a-13d9-441f-88c2-acde669ff639", | 372 | "id": "e19ab70a-13d9-441f-88c2-acde669ff639", | ||
387 | "name": "non-Abelian anyons", | 373 | "name": "non-Abelian anyons", | ||
388 | "state": "active", | 374 | "state": "active", | ||
389 | "vocabulary_id": null | 375 | "vocabulary_id": null | ||
390 | } | 376 | } | ||
391 | ], | 377 | ], | ||
392 | "terms_of_usage": "Yes", | 378 | "terms_of_usage": "Yes", | ||
393 | "title": "Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a | 379 | "title": "Condensation of non-Abelian $SU(3)_{N_f}$ anyons in a | ||
394 | one-dimensional fermion model", | 380 | one-dimensional fermion model", | ||
395 | "type": "vdataset", | 381 | "type": "vdataset", | ||
396 | "url": | 382 | "url": | ||
397 | /data.uni-hannover.de/dataset/su3k-non-abelian-anyons-thermodynamics", | 383 | /data.uni-hannover.de/dataset/su3k-non-abelian-anyons-thermodynamics", | ||
398 | "version": "" | 384 | "version": "" | ||
399 | } | 385 | } |