Changes
On November 30, 2024 at 10:41:28 AM UTC, admin:
-
Moved Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: Short-term versus acclimation effects from organization PANGAEA (Biosphere) to organization PANGAEA (Ecology)
-
Removed the following tags from Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: Short-term versus acclimation effects
-
Added the following tags to Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: Short-term versus acclimation effects
f | 1 | { | f | 1 | { |
2 | "author": "Trimborn, Scarlett", | 2 | "author": "Trimborn, Scarlett", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "citation": [], | 4 | "citation": [], | ||
5 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 5 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
6 | "doi": "10.1594/PANGAEA.833713", | 6 | "doi": "10.1594/PANGAEA.833713", | ||
7 | "doi_date_published": "2014", | 7 | "doi_date_published": "2014", | ||
8 | "doi_publisher": "", | 8 | "doi_publisher": "", | ||
9 | "doi_status": "True", | 9 | "doi_status": "True", | ||
10 | "extra_authors": [ | 10 | "extra_authors": [ | ||
11 | { | 11 | { | ||
12 | "extra_author": "Thoms, Silke", | 12 | "extra_author": "Thoms, Silke", | ||
13 | "familyName": "Thoms", | 13 | "familyName": "Thoms", | ||
14 | "givenName": "Silke", | 14 | "givenName": "Silke", | ||
15 | "orcid": "" | 15 | "orcid": "" | ||
16 | }, | 16 | }, | ||
17 | { | 17 | { | ||
18 | "extra_author": "Petrou, Katherina", | 18 | "extra_author": "Petrou, Katherina", | ||
19 | "familyName": "Petrou", | 19 | "familyName": "Petrou", | ||
20 | "givenName": "Katherina", | 20 | "givenName": "Katherina", | ||
21 | "orcid": "0000-0002-2703-0694" | 21 | "orcid": "0000-0002-2703-0694" | ||
22 | }, | 22 | }, | ||
23 | { | 23 | { | ||
24 | "extra_author": "Kranz, Sven A", | 24 | "extra_author": "Kranz, Sven A", | ||
25 | "familyName": "Kranz", | 25 | "familyName": "Kranz", | ||
26 | "givenName": "Sven A", | 26 | "givenName": "Sven A", | ||
27 | "orcid": "0000-0002-6639-6779" | 27 | "orcid": "0000-0002-6639-6779" | ||
28 | }, | 28 | }, | ||
29 | { | 29 | { | ||
30 | "extra_author": "Rost, Bj\u00f6rn", | 30 | "extra_author": "Rost, Bj\u00f6rn", | ||
31 | "familyName": "Rost", | 31 | "familyName": "Rost", | ||
32 | "givenName": "Bj\u00f6rn", | 32 | "givenName": "Bj\u00f6rn", | ||
33 | "orcid": "0000-0001-5452-5505" | 33 | "orcid": "0000-0001-5452-5505" | ||
34 | } | 34 | } | ||
35 | ], | 35 | ], | ||
36 | "familyName": "Trimborn", | 36 | "familyName": "Trimborn", | ||
37 | "givenName": "Scarlett", | 37 | "givenName": "Scarlett", | ||
38 | "groups": [], | 38 | "groups": [], | ||
39 | "id": "b0eea52b-47dd-40cc-9127-c678b4f286e0", | 39 | "id": "b0eea52b-47dd-40cc-9127-c678b4f286e0", | ||
40 | "isopen": false, | 40 | "isopen": false, | ||
41 | "license_id": "CC-BY-3.0", | 41 | "license_id": "CC-BY-3.0", | ||
42 | "license_title": "CC-BY-3.0", | 42 | "license_title": "CC-BY-3.0", | ||
43 | "metadata_created": "2024-11-29T11:44:53.522544", | 43 | "metadata_created": "2024-11-29T11:44:53.522544", | ||
n | 44 | "metadata_modified": "2024-11-29T11:44:53.522551", | n | 44 | "metadata_modified": "2024-11-30T10:41:28.791872", |
45 | "name": "png-doi-10-1594-pangaea-833713", | 45 | "name": "png-doi-10-1594-pangaea-833713", | ||
46 | "notes": "The present study examines how different pCO2 acclimations | 46 | "notes": "The present study examines how different pCO2 acclimations | ||
47 | affect the CO2- and light-dependence of photophysiological processes | 47 | affect the CO2- and light-dependence of photophysiological processes | ||
48 | and O2 fluxes in four Southern Ocean (SO) key phytoplankton species. | 48 | and O2 fluxes in four Southern Ocean (SO) key phytoplankton species. | ||
49 | We grew Chaetoceros debilis (Cleve), Pseudo-nitzschia subcurvata | 49 | We grew Chaetoceros debilis (Cleve), Pseudo-nitzschia subcurvata | ||
50 | (Hasle), Fragilariopsis kerguelensis (O'Meara) and Phaeocystis | 50 | (Hasle), Fragilariopsis kerguelensis (O'Meara) and Phaeocystis | ||
51 | antarctica (Karsten) under low (160 \u00b5atm) and high (1000 ?atm) | 51 | antarctica (Karsten) under low (160 \u00b5atm) and high (1000 ?atm) | ||
52 | pCO2. The CO2- and light-dependence of fluorescence parameters of | 52 | pCO2. The CO2- and light-dependence of fluorescence parameters of | ||
53 | photosystem II (PSII) were determined by means of a fluorescence | 53 | photosystem II (PSII) were determined by means of a fluorescence | ||
54 | induction relaxation system (FIRe). In all tested species, | 54 | induction relaxation system (FIRe). In all tested species, | ||
55 | nonphotochemical quenching (NPQ) is the primary photoprotection | 55 | nonphotochemical quenching (NPQ) is the primary photoprotection | ||
56 | strategy in response to short-term exposure to high light or low CO2 | 56 | strategy in response to short-term exposure to high light or low CO2 | ||
57 | concentrations. In C. debilis and P. subcurvata, PSII connectivity (p) | 57 | concentrations. In C. debilis and P. subcurvata, PSII connectivity (p) | ||
58 | and functional absorption cross-sections of PSII in ambient light | 58 | and functional absorption cross-sections of PSII in ambient light | ||
59 | (sigma PSII') also contributed to photoprotection while changes in | 59 | (sigma PSII') also contributed to photoprotection while changes in | ||
60 | re-oxidation times of Qa acceptor (tQa) were more significant in F. | 60 | re-oxidation times of Qa acceptor (tQa) were more significant in F. | ||
61 | kerguelensis. The latter was also the only species being responsive to | 61 | kerguelensis. The latter was also the only species being responsive to | ||
62 | high acclimation pCO2, as these cells had enhanced relative electron | 62 | high acclimation pCO2, as these cells had enhanced relative electron | ||
63 | transport rates (rETRs) and sigma PSII' while tQa and p were reduced | 63 | transport rates (rETRs) and sigma PSII' while tQa and p were reduced | ||
64 | under short-term exposure to high irradiance. Low CO2-acclimated cells | 64 | under short-term exposure to high irradiance. Low CO2-acclimated cells | ||
65 | of F. kerguelensis and all pCO2 acclimations of C. debilis and P. | 65 | of F. kerguelensis and all pCO2 acclimations of C. debilis and P. | ||
66 | subcurvata showed dynamic photoinhibition with increasing irradiance. | 66 | subcurvata showed dynamic photoinhibition with increasing irradiance. | ||
67 | To test for the role and presence of the Mehler reaction in C. debilis | 67 | To test for the role and presence of the Mehler reaction in C. debilis | ||
68 | and P. subcurvata, the light-dependence of O2 fluxes was estimated | 68 | and P. subcurvata, the light-dependence of O2 fluxes was estimated | ||
69 | using membrane inlet mass spectrometry (MIMS). Our results show that | 69 | using membrane inlet mass spectrometry (MIMS). Our results show that | ||
70 | the Mehler reaction is absent in both species under the tested | 70 | the Mehler reaction is absent in both species under the tested | ||
71 | conditions. We also observed that dark respiration was strongly | 71 | conditions. We also observed that dark respiration was strongly | ||
72 | reduced under high pCO2 in C. debilis while it remained unaltered in | 72 | reduced under high pCO2 in C. debilis while it remained unaltered in | ||
73 | P. subcurvata. Our study revealed species-specific differences in the | 73 | P. subcurvata. Our study revealed species-specific differences in the | ||
74 | photophysiological responses to pCO2, both on the acclimation as well | 74 | photophysiological responses to pCO2, both on the acclimation as well | ||
75 | as the short-term level.", | 75 | as the short-term level.", | ||
76 | "num_resources": 0, | 76 | "num_resources": 0, | ||
n | 77 | "num_tags": 16, | n | 77 | "num_tags": 19, |
78 | "orcid": "0000-0003-1434-9927", | 78 | "orcid": "0000-0003-1434-9927", | ||
79 | "organization": { | 79 | "organization": { | ||
80 | "approval_status": "approved", | 80 | "approval_status": "approved", | ||
n | 81 | "created": "2024-11-29T11:32:00.143130", | n | 81 | "created": "2024-11-30T10:25:26.439072", |
82 | "description": "PANGAEA (Data Publisher for Earth & Environmental | 82 | "description": "PANGAEA (Data Publisher for Earth & Environmental | ||
83 | Science): The information system PANGAEA is operated as an Open Access | 83 | Science): The information system PANGAEA is operated as an Open Access | ||
84 | library aimed at archiving, publishing and distributing georeferenced | 84 | library aimed at archiving, publishing and distributing georeferenced | ||
85 | data from earth system research. PANGAEA guarantees long-term | 85 | data from earth system research. PANGAEA guarantees long-term | ||
86 | availability (greater than 10 years) of its content. PANGAEA is open | 86 | availability (greater than 10 years) of its content. PANGAEA is open | ||
87 | to any project, institution, or individual scientist to use or to | 87 | to any project, institution, or individual scientist to use or to | ||
88 | archive and publish data. PANGAEA focuses on georeferenced | 88 | archive and publish data. PANGAEA focuses on georeferenced | ||
89 | observational data, experimental data, and models/simulations. | 89 | observational data, experimental data, and models/simulations. | ||
90 | Citability, comprehensive metadata descriptions, interoperability of | 90 | Citability, comprehensive metadata descriptions, interoperability of | ||
91 | data and metadata, a high degree of structural and semantic | 91 | data and metadata, a high degree of structural and semantic | ||
92 | harmonization of the data inventory as well as the commitment of the | 92 | harmonization of the data inventory as well as the commitment of the | ||
93 | hosting institutions ensures FAIRness of archived data.", | 93 | hosting institutions ensures FAIRness of archived data.", | ||
n | 94 | "id": "3226ef9c-20d1-43fd-ba8f-fa35c8c9fb5d", | n | 94 | "id": "c2816fc6-b5ce-42c9-b5a4-11709b658b82", |
95 | "image_url": "pangaea_topicbiosphere.png", | 95 | "image_url": "pangaea_topicecology.png", | ||
96 | "is_organization": true, | 96 | "is_organization": true, | ||
n | 97 | "name": "pangaea_biosphere", | n | 97 | "name": "pangaea_ecology", |
98 | "state": "active", | 98 | "state": "active", | ||
n | 99 | "title": "PANGAEA (Biosphere)", | n | 99 | "title": "PANGAEA (Ecology)", |
100 | "type": "organization" | 100 | "type": "organization" | ||
101 | }, | 101 | }, | ||
n | 102 | "owner_org": "3226ef9c-20d1-43fd-ba8f-fa35c8c9fb5d", | n | 102 | "owner_org": "c2816fc6-b5ce-42c9-b5a4-11709b658b82", |
103 | "private": false, | 103 | "private": false, | ||
104 | "publication_year": "2014", | 104 | "publication_year": "2014", | ||
105 | "related_identifiers": [ | 105 | "related_identifiers": [ | ||
106 | { | 106 | { | ||
107 | "authors": "Trimborn Scarlett,Thoms Silke,Petrou Katherina,Kranz | 107 | "authors": "Trimborn Scarlett,Thoms Silke,Petrou Katherina,Kranz | ||
108 | Sven A,Rost Bj\u00f6rn", | 108 | Sven A,Rost Bj\u00f6rn", | ||
109 | "email_authors": | 109 | "email_authors": | ||
110 | .de,Katherina.Petrou@uts.edu.au,Sven.Kranz@awi.de,bjoern.rost@awi.de", | 110 | .de,Katherina.Petrou@uts.edu.au,Sven.Kranz@awi.de,bjoern.rost@awi.de", | ||
111 | "identifier": "https://doi.org/10.1016/j.jembe.2013.11.001", | 111 | "identifier": "https://doi.org/10.1016/j.jembe.2013.11.001", | ||
112 | "identifier_type": "DOI", | 112 | "identifier_type": "DOI", | ||
113 | "orcid_authors": | 113 | "orcid_authors": | ||
114 | 34-9927,,0000-0002-2703-0694,0000-0002-6639-6779,0000-0001-5452-5505", | 114 | 34-9927,,0000-0002-2703-0694,0000-0002-6639-6779,0000-0001-5452-5505", | ||
115 | "relation_type": "IsSupplementTo", | 115 | "relation_type": "IsSupplementTo", | ||
116 | "source": "Journal of Experimental Marine Biology and Ecology", | 116 | "source": "Journal of Experimental Marine Biology and Ecology", | ||
117 | "title": "Photophysiological responses of Southern Ocean | 117 | "title": "Photophysiological responses of Southern Ocean | ||
118 | phytoplankton to changes in CO2 concentrations: Short-term versus | 118 | phytoplankton to changes in CO2 concentrations: Short-term versus | ||
119 | acclimation effects", | 119 | acclimation effects", | ||
120 | "year": "2014" | 120 | "year": "2014" | ||
121 | }, | 121 | }, | ||
122 | { | 122 | { | ||
123 | "authors": "Lavigne H\u00e9lo\u00efse,Epitalon | 123 | "authors": "Lavigne H\u00e9lo\u00efse,Epitalon | ||
124 | Jean-Marie,Gattuso Jean-Pierre", | 124 | Jean-Marie,Gattuso Jean-Pierre", | ||
125 | "email_authors": | 125 | "email_authors": | ||
126 | "hlavigne@naturalsciences.be,,jean-pierre.gattuso@imev-mer.fr", | 126 | "hlavigne@naturalsciences.be,,jean-pierre.gattuso@imev-mer.fr", | ||
127 | "identifier": "https://cran.r-project.org/package=seacarb", | 127 | "identifier": "https://cran.r-project.org/package=seacarb", | ||
128 | "identifier_type": "DOI", | 128 | "identifier_type": "DOI", | ||
129 | "orcid_authors": ",,0000-0002-4533-4114", | 129 | "orcid_authors": ",,0000-0002-4533-4114", | ||
130 | "relation_type": "References", | 130 | "relation_type": "References", | ||
131 | "source": "", | 131 | "source": "", | ||
132 | "title": "seacarb: seawater carbonate chemistry with R. R | 132 | "title": "seacarb: seawater carbonate chemistry with R. R | ||
133 | package version 3.0", | 133 | package version 3.0", | ||
134 | "year": "2014" | 134 | "year": "2014" | ||
135 | } | 135 | } | ||
136 | ], | 136 | ], | ||
137 | "relationships_as_object": [], | 137 | "relationships_as_object": [], | ||
138 | "relationships_as_subject": [], | 138 | "relationships_as_subject": [], | ||
139 | "repository_name": "PANGAEA (Data Publisher for Earth & | 139 | "repository_name": "PANGAEA (Data Publisher for Earth & | ||
140 | Environmental Science)", | 140 | Environmental Science)", | ||
141 | "resource_type": "text/tab-separated-values - filename: | 141 | "resource_type": "text/tab-separated-values - filename: | ||
142 | Trimborn_2014", | 142 | Trimborn_2014", | ||
143 | "resources": [], | 143 | "resources": [], | ||
144 | "source_metadata_created": "2014", | 144 | "source_metadata_created": "2014", | ||
145 | "source_metadata_modified": "", | 145 | "source_metadata_modified": "", | ||
146 | "state": "active", | 146 | "state": "active", | ||
147 | "subject_areas": [ | 147 | "subject_areas": [ | ||
148 | { | 148 | { | ||
149 | "subject_area_additional": "", | 149 | "subject_area_additional": "", | ||
150 | "subject_area_name": "BiologicalClassification" | 150 | "subject_area_name": "BiologicalClassification" | ||
151 | }, | 151 | }, | ||
152 | { | 152 | { | ||
153 | "subject_area_additional": "", | 153 | "subject_area_additional": "", | ||
154 | "subject_area_name": "Biosphere" | 154 | "subject_area_name": "Biosphere" | ||
155 | }, | 155 | }, | ||
156 | { | 156 | { | ||
157 | "subject_area_additional": "", | 157 | "subject_area_additional": "", | ||
158 | "subject_area_name": "Chemistry" | 158 | "subject_area_name": "Chemistry" | ||
159 | }, | 159 | }, | ||
160 | { | 160 | { | ||
161 | "subject_area_additional": "", | 161 | "subject_area_additional": "", | ||
162 | "subject_area_name": "Ecology" | 162 | "subject_area_name": "Ecology" | ||
163 | }, | 163 | }, | ||
164 | { | 164 | { | ||
165 | "subject_area_additional": "", | 165 | "subject_area_additional": "", | ||
166 | "subject_area_name": "Oceans" | 166 | "subject_area_name": "Oceans" | ||
167 | } | 167 | } | ||
168 | ], | 168 | ], | ||
169 | "tags": [ | 169 | "tags": [ | ||
170 | { | 170 | { | ||
171 | "display_name": "Antarctic", | 171 | "display_name": "Antarctic", | ||
172 | "id": "d6da6eb5-bf96-4ccb-b3e9-ca4f19473e23", | 172 | "id": "d6da6eb5-bf96-4ccb-b3e9-ca4f19473e23", | ||
173 | "name": "Antarctic", | 173 | "name": "Antarctic", | ||
174 | "state": "active", | 174 | "state": "active", | ||
175 | "vocabulary_id": null | 175 | "vocabulary_id": null | ||
176 | }, | 176 | }, | ||
177 | { | 177 | { | ||
n | n | 178 | "display_name": "Aquaria 20 L", | ||
179 | "id": "62c412c1-2294-406a-ad79-183330400def", | ||||
180 | "name": "Aquaria 20 L", | ||||
181 | "state": "active", | ||||
182 | "vocabulary_id": null | ||||
183 | }, | ||||
184 | { | ||||
178 | "display_name": "Bottles or small containers-Aquaria 20 L", | 185 | "display_name": "Bottles or small containers", | ||
179 | "id": "be154617-73a3-4ed4-b54f-69e22323c12a", | 186 | "id": "ba227243-af91-4efc-8086-790112e90e09", | ||
180 | "name": "Bottles or small containers-Aquaria 20 L", | 187 | "name": "Bottles or small containers", | ||
181 | "state": "active", | 188 | "state": "active", | ||
182 | "vocabulary_id": null | 189 | "vocabulary_id": null | ||
183 | }, | 190 | }, | ||
184 | { | 191 | { | ||
185 | "display_name": "Chaetoceros debilis", | 192 | "display_name": "Chaetoceros debilis", | ||
186 | "id": "7a82e1c8-454f-44e9-bf4f-a89d3c9637cd", | 193 | "id": "7a82e1c8-454f-44e9-bf4f-a89d3c9637cd", | ||
187 | "name": "Chaetoceros debilis", | 194 | "name": "Chaetoceros debilis", | ||
188 | "state": "active", | 195 | "state": "active", | ||
189 | "vocabulary_id": null | 196 | "vocabulary_id": null | ||
190 | }, | 197 | }, | ||
191 | { | 198 | { | ||
192 | "display_name": "Chromista", | 199 | "display_name": "Chromista", | ||
193 | "id": "36ecf721-e11a-4662-8783-da539c625d5c", | 200 | "id": "36ecf721-e11a-4662-8783-da539c625d5c", | ||
194 | "name": "Chromista", | 201 | "name": "Chromista", | ||
195 | "state": "active", | 202 | "state": "active", | ||
196 | "vocabulary_id": null | 203 | "vocabulary_id": null | ||
197 | }, | 204 | }, | ||
198 | { | 205 | { | ||
199 | "display_name": "Fragilariopsis kerguelensis", | 206 | "display_name": "Fragilariopsis kerguelensis", | ||
200 | "id": "a4ff35fb-8a6f-4d05-bec4-98d8df7d4b81", | 207 | "id": "a4ff35fb-8a6f-4d05-bec4-98d8df7d4b81", | ||
201 | "name": "Fragilariopsis kerguelensis", | 208 | "name": "Fragilariopsis kerguelensis", | ||
202 | "state": "active", | 209 | "state": "active", | ||
203 | "vocabulary_id": null | 210 | "vocabulary_id": null | ||
204 | }, | 211 | }, | ||
205 | { | 212 | { | ||
206 | "display_name": "Haptophyta", | 213 | "display_name": "Haptophyta", | ||
207 | "id": "8bf1fc3b-146a-4852-9542-74adf5d86d57", | 214 | "id": "8bf1fc3b-146a-4852-9542-74adf5d86d57", | ||
208 | "name": "Haptophyta", | 215 | "name": "Haptophyta", | ||
209 | "state": "active", | 216 | "state": "active", | ||
210 | "vocabulary_id": null | 217 | "vocabulary_id": null | ||
211 | }, | 218 | }, | ||
212 | { | 219 | { | ||
213 | "display_name": "Laboratory experiment", | 220 | "display_name": "Laboratory experiment", | ||
214 | "id": "c6c00754-c769-4932-a517-bff2c9512884", | 221 | "id": "c6c00754-c769-4932-a517-bff2c9512884", | ||
215 | "name": "Laboratory experiment", | 222 | "name": "Laboratory experiment", | ||
216 | "state": "active", | 223 | "state": "active", | ||
217 | "vocabulary_id": null | 224 | "vocabulary_id": null | ||
218 | }, | 225 | }, | ||
219 | { | 226 | { | ||
220 | "display_name": "Laboratory strains", | 227 | "display_name": "Laboratory strains", | ||
221 | "id": "60ce9207-f124-49be-bcc3-809237101388", | 228 | "id": "60ce9207-f124-49be-bcc3-809237101388", | ||
222 | "name": "Laboratory strains", | 229 | "name": "Laboratory strains", | ||
223 | "state": "active", | 230 | "state": "active", | ||
224 | "vocabulary_id": null | 231 | "vocabulary_id": null | ||
225 | }, | 232 | }, | ||
226 | { | 233 | { | ||
227 | "display_name": "Ochrophyta", | 234 | "display_name": "Ochrophyta", | ||
228 | "id": "74d761aa-cd40-4dc2-be39-c0ca522f0019", | 235 | "id": "74d761aa-cd40-4dc2-be39-c0ca522f0019", | ||
229 | "name": "Ochrophyta", | 236 | "name": "Ochrophyta", | ||
230 | "state": "active", | 237 | "state": "active", | ||
231 | "vocabulary_id": null | 238 | "vocabulary_id": null | ||
232 | }, | 239 | }, | ||
233 | { | 240 | { | ||
234 | "display_name": "Pelagos", | 241 | "display_name": "Pelagos", | ||
235 | "id": "012f5b69-4e75-4f54-8ac4-8bf192cafaa2", | 242 | "id": "012f5b69-4e75-4f54-8ac4-8bf192cafaa2", | ||
236 | "name": "Pelagos", | 243 | "name": "Pelagos", | ||
237 | "state": "active", | 244 | "state": "active", | ||
238 | "vocabulary_id": null | 245 | "vocabulary_id": null | ||
239 | }, | 246 | }, | ||
240 | { | 247 | { | ||
241 | "display_name": "Phaeocystis antarctica", | 248 | "display_name": "Phaeocystis antarctica", | ||
242 | "id": "530be573-2165-4aa2-b919-34b3ec6604d4", | 249 | "id": "530be573-2165-4aa2-b919-34b3ec6604d4", | ||
243 | "name": "Phaeocystis antarctica", | 250 | "name": "Phaeocystis antarctica", | ||
244 | "state": "active", | 251 | "state": "active", | ||
245 | "vocabulary_id": null | 252 | "vocabulary_id": null | ||
246 | }, | 253 | }, | ||
247 | { | 254 | { | ||
n | n | 255 | "display_name": "Photosynthesis", | ||
256 | "id": "ab256517-eb7b-4eed-ad52-64a0ee98fe87", | ||||
257 | "name": "Photosynthesis", | ||||
258 | "state": "active", | ||||
259 | "vocabulary_id": null | ||||
260 | }, | ||||
261 | { | ||||
248 | "display_name": "Phytoplankton", | 262 | "display_name": "Phytoplankton", | ||
249 | "id": "9c357867-c046-43fa-ad3e-39f612d5622b", | 263 | "id": "9c357867-c046-43fa-ad3e-39f612d5622b", | ||
250 | "name": "Phytoplankton", | 264 | "name": "Phytoplankton", | ||
251 | "state": "active", | 265 | "state": "active", | ||
252 | "vocabulary_id": null | 266 | "vocabulary_id": null | ||
253 | }, | 267 | }, | ||
254 | { | 268 | { | ||
n | 255 | "display_name": "Primary production-Photosynthesis", | n | 269 | "display_name": "Primary production", |
256 | "id": "446160f8-ac15-4da8-a39f-79b6c421e396", | 270 | "id": "aca6914d-a728-406d-a5b9-dd9593c21e4e", | ||
257 | "name": "Primary production-Photosynthesis", | 271 | "name": "Primary production", | ||
258 | "state": "active", | 272 | "state": "active", | ||
259 | "vocabulary_id": null | 273 | "vocabulary_id": null | ||
260 | }, | 274 | }, | ||
261 | { | 275 | { | ||
n | 262 | "display_name": "Pseudo-nitzschia subcurvata", | n | 276 | "display_name": "Pseudo", |
263 | "id": "b91882fe-3454-4be4-8193-53a30a885936", | 277 | "id": "616df2ee-693a-43a4-829b-8c8f37e0be3e", | ||
264 | "name": "Pseudo-nitzschia subcurvata", | 278 | "name": "Pseudo", | ||
265 | "state": "active", | 279 | "state": "active", | ||
266 | "vocabulary_id": null | 280 | "vocabulary_id": null | ||
267 | }, | 281 | }, | ||
268 | { | 282 | { | ||
269 | "display_name": "Respiration", | 283 | "display_name": "Respiration", | ||
270 | "id": "494c54c9-c9ac-44d3-88fa-8e717d8113e0", | 284 | "id": "494c54c9-c9ac-44d3-88fa-8e717d8113e0", | ||
271 | "name": "Respiration", | 285 | "name": "Respiration", | ||
272 | "state": "active", | 286 | "state": "active", | ||
273 | "vocabulary_id": null | 287 | "vocabulary_id": null | ||
274 | }, | 288 | }, | ||
275 | { | 289 | { | ||
276 | "display_name": "Single species", | 290 | "display_name": "Single species", | ||
277 | "id": "88de69be-3bdd-4cf8-b6a1-386d72c5888d", | 291 | "id": "88de69be-3bdd-4cf8-b6a1-386d72c5888d", | ||
278 | "name": "Single species", | 292 | "name": "Single species", | ||
t | t | 293 | "state": "active", | ||
294 | "vocabulary_id": null | ||||
295 | }, | ||||
296 | { | ||||
297 | "display_name": "nitzschia subcurvata", | ||||
298 | "id": "c068a0c2-7213-43d8-8a96-7748e3c23db9", | ||||
299 | "name": "nitzschia subcurvata", | ||||
279 | "state": "active", | 300 | "state": "active", | ||
280 | "vocabulary_id": null | 301 | "vocabulary_id": null | ||
281 | } | 302 | } | ||
282 | ], | 303 | ], | ||
283 | "title": "Photophysiological responses of Southern Ocean | 304 | "title": "Photophysiological responses of Southern Ocean | ||
284 | phytoplankton to changes in CO2 concentrations: Short-term versus | 305 | phytoplankton to changes in CO2 concentrations: Short-term versus | ||
285 | acclimation effects", | 306 | acclimation effects", | ||
286 | "type": "vdataset", | 307 | "type": "vdataset", | ||
287 | "url": "https://doi.org/10.1594/PANGAEA.833713" | 308 | "url": "https://doi.org/10.1594/PANGAEA.833713" | ||
288 | } | 309 | } |