Changes
On August 4, 2023 at 9:04:01 AM UTC,
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Putzu, Marina", | 2 | "author": "Putzu, Marina", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1165", | 5 | "doi": "10.35097/1165", | ||
6 | "doi_date_published": "2023", | 6 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "groups": [], | 9 | "groups": [], | ||
10 | "id": "de11dd46-80c7-44cb-918b-634b65253f46", | 10 | "id": "de11dd46-80c7-44cb-918b-634b65253f46", | ||
11 | "isopen": false, | 11 | "isopen": false, | ||
12 | "license_id": "CC BY-SA 4.0 Attribution-ShareAlike", | 12 | "license_id": "CC BY-SA 4.0 Attribution-ShareAlike", | ||
13 | "license_title": "CC BY-SA 4.0 Attribution-ShareAlike", | 13 | "license_title": "CC BY-SA 4.0 Attribution-ShareAlike", | ||
14 | "metadata_created": "2023-08-04T08:50:13.282800", | 14 | "metadata_created": "2023-08-04T08:50:13.282800", | ||
t | 15 | "metadata_modified": "2023-08-04T08:53:19.769352", | t | 15 | "metadata_modified": "2023-08-04T09:04:01.282510", |
16 | "name": "rdr-doi-10-35097-1165", | 16 | "name": "rdr-doi-10-35097-1165", | ||
17 | "notes": "Abstract: In dieser Arbeit werden zwei Aspekte der | 17 | "notes": "Abstract: In dieser Arbeit werden zwei Aspekte der | ||
18 | dynamischen Natur von proteinen mit Hilfe von Enhanced Sampling | 18 | dynamischen Natur von proteinen mit Hilfe von Enhanced Sampling | ||
19 | Methoden untersucht. Zun\u00e4chst wurden | 19 | Methoden untersucht. Zun\u00e4chst wurden | ||
20 | Mikrosekunden-Molekulardynamiksimulationen von Harzianin HK VI (HZ) in | 20 | Mikrosekunden-Molekulardynamiksimulationen von Harzianin HK VI (HZ) in | ||
21 | Wechselwirkung mit einer Dimyristoylphosphatidylcholin-Doppelschicht | 21 | Wechselwirkung mit einer Dimyristoylphosphatidylcholin-Doppelschicht | ||
22 | unter der Bedingung eines niedrigen Peptid-zu-Lipid Verh\u00e4ltnisses | 22 | unter der Bedingung eines niedrigen Peptid-zu-Lipid Verh\u00e4ltnisses | ||
23 | durchgef\u00fchrt. Zwei Orientierungen des HZ-Molek\u00fcls in der | 23 | durchgef\u00fchrt. Zwei Orientierungen des HZ-Molek\u00fcls in der | ||
24 | Doppelschicht wurden gefunden und charakterisiert. In der Ausrichtung | 24 | Doppelschicht wurden gefunden und charakterisiert. In der Ausrichtung | ||
25 | senkrecht zur Doppelschicht-Oberfl\u00e4che induziert HZ eine lokale | 25 | senkrecht zur Doppelschicht-Oberfl\u00e4che induziert HZ eine lokale | ||
26 | Ausd\u00fcnnung der Doppelschicht. Wird HZ parallel zu seiner | 26 | Ausd\u00fcnnung der Doppelschicht. Wird HZ parallel zu seiner | ||
27 | Oberfl\u00e4che in die Doppelschicht eingesetzt, befindet es sich | 27 | Oberfl\u00e4che in die Doppelschicht eingesetzt, befindet es sich | ||
28 | nahezu vollst\u00e4ndig im hydrophoben Bereich der | 28 | nahezu vollst\u00e4ndig im hydrophoben Bereich der | ||
29 | Doppelschicht.\r\nEine ausgedehnte Sampling lieferte qualitative | 29 | Doppelschicht.\r\nEine ausgedehnte Sampling lieferte qualitative | ||
30 | Ergebnisse und zeigte, dass die letztgenannte Orientierung ein | 30 | Ergebnisse und zeigte, dass die letztgenannte Orientierung ein | ||
31 | globales Minimum der freien Energie ist. Die sekund\u00e4re Struktur | 31 | globales Minimum der freien Energie ist. Die sekund\u00e4re Struktur | ||
32 | von HZ wurde charakterisiert, und es wurde festgestellt, dass sie sich | 32 | von HZ wurde charakterisiert, und es wurde festgestellt, dass sie sich | ||
33 | in der 3_10-helikalen Familie befindet.\r\nZweitens wurde die | 33 | in der 3_10-helikalen Familie befindet.\r\nZweitens wurde die | ||
34 | Thiol-Disulfid-Austauschreaktion in Modellsystemen und kleinen | 34 | Thiol-Disulfid-Austauschreaktion in Modellsystemen und kleinen | ||
35 | Peptiden mit Hilfe eines kombinierten QM/MM-Metadynamikschemas | 35 | Peptiden mit Hilfe eines kombinierten QM/MM-Metadynamikschemas | ||
36 | untersucht. Die freien Energielandschaften dieser Systeme wurden | 36 | untersucht. Die freien Energielandschaften dieser Systeme wurden | ||
37 | generiert, und liefern die Strukturen von Reaktanden und Produkten mit | 37 | generiert, und liefern die Strukturen von Reaktanden und Produkten mit | ||
38 | atomaren Details, sowie die H\u00f6hen der freien Energiebarrieren | 38 | atomaren Details, sowie die H\u00f6hen der freien Energiebarrieren | ||
39 | (oder Aktivierungsenergien), die dem spontanen Austausch | 39 | (oder Aktivierungsenergien), die dem spontanen Austausch | ||
40 | entgegenwirken. Ein QM/MM-Schema mit rein klassischem Wasser erwies | 40 | entgegenwirken. Ein QM/MM-Schema mit rein klassischem Wasser erwies | ||
41 | sich als effiziente und pr\u00e4zise Kompromissl\u00f6sung.\r\nDie | 41 | sich als effiziente und pr\u00e4zise Kompromissl\u00f6sung.\r\nDie | ||
42 | Berechnungen ergaben den erwarteten symmetrischen | 42 | Berechnungen ergaben den erwarteten symmetrischen | ||
43 | Trisulfid-\u00dcbergangszustand und seine Struktur und Energiebarriere | 43 | Trisulfid-\u00dcbergangszustand und seine Struktur und Energiebarriere | ||
44 | waren f\u00fcr die intramolekularen Thiol-Disulfid-Reaktionen in | 44 | waren f\u00fcr die intramolekularen Thiol-Disulfid-Reaktionen in | ||
45 | Modellpeptiden sehr \u00e4hnlich. W\u00e4hrend CXC-Disulfidbindungen | 45 | Modellpeptiden sehr \u00e4hnlich. W\u00e4hrend CXC-Disulfidbindungen | ||
46 | als sterisch ung\u00fcnstig eingestuft wurden, wurde CXXC | 46 | als sterisch ung\u00fcnstig eingestuft wurden, wurde CXXC | ||
47 | gegen\u00fcber l\u00e4ngerfristigen Disulfidbindungen entlang des | 47 | gegen\u00fcber l\u00e4ngerfristigen Disulfidbindungen entlang des | ||
48 | Peptidr\u00fcckgrats bevorzugt, was der hohen H\u00e4ufigkeit von | 48 | Peptidr\u00fcckgrats bevorzugt, was der hohen H\u00e4ufigkeit von | ||
49 | CXXC-Motiven in Redox-Proteinen entspricht. Eine direkte Anwendung auf | 49 | CXXC-Motiven in Redox-Proteinen entspricht. Eine direkte Anwendung auf | ||
50 | ein reales Protein wurde ebenfalls in Form von Force-Clamp | 50 | ein reales Protein wurde ebenfalls in Form von Force-Clamp | ||
51 | Simulationen durchgef\u00fchrt. Das Protokoll erm\u00f6glichte die | 51 | Simulationen durchgef\u00fchrt. Das Protokoll erm\u00f6glichte die | ||
52 | Simulation der Disulfidbindungsisomerisierung in einem einzelnen | 52 | Simulation der Disulfidbindungsisomerisierung in einem einzelnen | ||
53 | Protein und reproduzierte die in einem AFM-Experiment beobachtete | 53 | Protein und reproduzierte die in einem AFM-Experiment beobachtete | ||
54 | Regioselektivit\u00e4t.\r\nAbstract: In this work two aspects of the | 54 | Regioselektivit\u00e4t.\r\nAbstract: In this work two aspects of the | ||
55 | dynamic nature of proteins are investigated using enhanced sampling | 55 | dynamic nature of proteins are investigated using enhanced sampling | ||
56 | techniques.\r\nFirstly, microsecond molecular dynamics simulations of | 56 | techniques.\r\nFirstly, microsecond molecular dynamics simulations of | ||
57 | harzianin HK VI (HZ) interacting with a dimyristoylphosphatidylcholine | 57 | harzianin HK VI (HZ) interacting with a dimyristoylphosphatidylcholine | ||
58 | bilayer were performed at the condition of low peptide-to-lipid ratio. | 58 | bilayer were performed at the condition of low peptide-to-lipid ratio. | ||
59 | Two orientations of HZ molecule in the bilayer were found and | 59 | Two orientations of HZ molecule in the bilayer were found and | ||
60 | characterized. In the orientation perpendicular to the bilayer | 60 | characterized. In the orientation perpendicular to the bilayer | ||
61 | surface, HZ induces a local thinning of the bilayer. When inserted | 61 | surface, HZ induces a local thinning of the bilayer. When inserted | ||
62 | into the bilayer parallel to its surface, HZ is located nearly | 62 | into the bilayer parallel to its surface, HZ is located nearly | ||
63 | completely within the hydrophobic region of the bilayer. An extended | 63 | completely within the hydrophobic region of the bilayer. An extended | ||
64 | sampling simulation provided qualitative results and showed the latter | 64 | sampling simulation provided qualitative results and showed the latter | ||
65 | orientation to be a global minimum of free energy.\r\nThe secondary | 65 | orientation to be a global minimum of free energy.\r\nThe secondary | ||
66 | structure of HZ was characterized, and it was found to be located in | 66 | structure of HZ was characterized, and it was found to be located in | ||
67 | the 3_10 -helical family.\r\nSecondly, the thiol\u2013disulfide | 67 | the 3_10 -helical family.\r\nSecondly, the thiol\u2013disulfide | ||
68 | exchange reaction in model systems and small peptides was investigated | 68 | exchange reaction in model systems and small peptides was investigated | ||
69 | by means of a combined QM/MM metadynamics scheme. The free energy | 69 | by means of a combined QM/MM metadynamics scheme. The free energy | ||
70 | landscapes of these systems were generated, providing the structures | 70 | landscapes of these systems were generated, providing the structures | ||
71 | of reactants and products with atomic detail, as well as the heights | 71 | of reactants and products with atomic detail, as well as the heights | ||
72 | of free energy barriers (or, activation energies) opposing the | 72 | of free energy barriers (or, activation energies) opposing the | ||
73 | spontaneous exchange. A QM/MM scheme with purely classical water | 73 | spontaneous exchange. A QM/MM scheme with purely classical water | ||
74 | turned out to be an efficient and accurate compromise solution. The | 74 | turned out to be an efficient and accurate compromise solution. The | ||
75 | calculations yielded the expected symmetric trisulfide transition | 75 | calculations yielded the expected symmetric trisulfide transition | ||
76 | state, and its structure and energy barrier were very similar for the | 76 | state, and its structure and energy barrier were very similar for the | ||
77 | intramolecular thiol\u2013disulfide reactions in model peptides. While | 77 | intramolecular thiol\u2013disulfide reactions in model peptides. While | ||
78 | CXC disulfide bonds were found sterically unfavorable, CXXC were | 78 | CXC disulfide bonds were found sterically unfavorable, CXXC were | ||
79 | favored over longer-range disulfide bonds along the peptide backbone, | 79 | favored over longer-range disulfide bonds along the peptide backbone, | ||
80 | in line with the high abundance of CXXC motifs in redox proteins. A | 80 | in line with the high abundance of CXXC motifs in redox proteins. A | ||
81 | direct application in a real protein was also performed through | 81 | direct application in a real protein was also performed through | ||
82 | force-clamp simulations. The protocol allowed for simulation of the | 82 | force-clamp simulations. The protocol allowed for simulation of the | ||
83 | disulfide bond isomerization in a single protein, reproducing the | 83 | disulfide bond isomerization in a single protein, reproducing the | ||
84 | regioselectivity observed in an AFM experiment.\r\nTechnicalRemarks: | 84 | regioselectivity observed in an AFM experiment.\r\nTechnicalRemarks: | ||
85 | The data is storedd divided into three separate folders, which follow | 85 | The data is storedd divided into three separate folders, which follow | ||
86 | the structure of the thesis.", | 86 | the structure of the thesis.", | ||
87 | "num_resources": 0, | 87 | "num_resources": 0, | ||
88 | "num_tags": 24, | 88 | "num_tags": 24, | ||
89 | "orcid": "", | 89 | "orcid": "", | ||
90 | "organization": { | 90 | "organization": { | ||
91 | "approval_status": "approved", | 91 | "approval_status": "approved", | ||
92 | "created": "2023-01-12T13:30:23.238233", | 92 | "created": "2023-01-12T13:30:23.238233", | ||
93 | "description": "RADAR (Research Data Repository) is a | 93 | "description": "RADAR (Research Data Repository) is a | ||
94 | cross-disciplinary repository for archiving and publishing research | 94 | cross-disciplinary repository for archiving and publishing research | ||
95 | data from completed scientific studies and projects. The focus is on | 95 | data from completed scientific studies and projects. The focus is on | ||
96 | research data from subjects that do not yet have their own | 96 | research data from subjects that do not yet have their own | ||
97 | discipline-specific infrastructures for research data management. ", | 97 | discipline-specific infrastructures for research data management. ", | ||
98 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 98 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
99 | "image_url": "radar-logo.svg", | 99 | "image_url": "radar-logo.svg", | ||
100 | "is_organization": true, | 100 | "is_organization": true, | ||
101 | "name": "radar", | 101 | "name": "radar", | ||
102 | "state": "active", | 102 | "state": "active", | ||
103 | "title": "RADAR", | 103 | "title": "RADAR", | ||
104 | "type": "organization" | 104 | "type": "organization" | ||
105 | }, | 105 | }, | ||
106 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 106 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
107 | "private": false, | 107 | "private": false, | ||
108 | "production_year": "2018", | 108 | "production_year": "2018", | ||
109 | "publication_year": "2023", | 109 | "publication_year": "2023", | ||
110 | "publishers": [ | 110 | "publishers": [ | ||
111 | { | 111 | { | ||
112 | "publisher": "Karlsruhe Institute of Technology" | 112 | "publisher": "Karlsruhe Institute of Technology" | ||
113 | } | 113 | } | ||
114 | ], | 114 | ], | ||
115 | "relationships_as_object": [], | 115 | "relationships_as_object": [], | ||
116 | "relationships_as_subject": [], | 116 | "relationships_as_subject": [], | ||
117 | "repository_name": "RADAR (Research Data Repository)", | 117 | "repository_name": "RADAR (Research Data Repository)", | ||
118 | "resources": [], | 118 | "resources": [], | ||
119 | "services_used_list": "", | 119 | "services_used_list": "", | ||
120 | "source_metadata_created": "2023", | 120 | "source_metadata_created": "2023", | ||
121 | "source_metadata_modified": "", | 121 | "source_metadata_modified": "", | ||
122 | "state": "active", | 122 | "state": "active", | ||
123 | "subject_areas": [ | 123 | "subject_areas": [ | ||
124 | { | 124 | { | ||
125 | "subject_area_additional": "", | 125 | "subject_area_additional": "", | ||
126 | "subject_area_name": "Chemistry" | 126 | "subject_area_name": "Chemistry" | ||
127 | } | 127 | } | ||
128 | ], | 128 | ], | ||
129 | "tags": [ | 129 | "tags": [ | ||
130 | { | 130 | { | ||
131 | "display_name": "AFM experiment", | 131 | "display_name": "AFM experiment", | ||
132 | "id": "b10d9a92-7ff4-4646-86ba-69169b0b08e7", | 132 | "id": "b10d9a92-7ff4-4646-86ba-69169b0b08e7", | ||
133 | "name": "AFM experiment", | 133 | "name": "AFM experiment", | ||
134 | "state": "active", | 134 | "state": "active", | ||
135 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
136 | }, | 136 | }, | ||
137 | { | 137 | { | ||
138 | "display_name": "Force Clamp", | 138 | "display_name": "Force Clamp", | ||
139 | "id": "edca129d-8fff-4a50-a745-71d33e5db7af", | 139 | "id": "edca129d-8fff-4a50-a745-71d33e5db7af", | ||
140 | "name": "Force Clamp", | 140 | "name": "Force Clamp", | ||
141 | "state": "active", | 141 | "state": "active", | ||
142 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
143 | }, | 143 | }, | ||
144 | { | 144 | { | ||
145 | "display_name": "Gromacs", | 145 | "display_name": "Gromacs", | ||
146 | "id": "3a4565a7-228f-4226-aef7-d88eb3d920d2", | 146 | "id": "3a4565a7-228f-4226-aef7-d88eb3d920d2", | ||
147 | "name": "Gromacs", | 147 | "name": "Gromacs", | ||
148 | "state": "active", | 148 | "state": "active", | ||
149 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
150 | }, | 150 | }, | ||
151 | { | 151 | { | ||
152 | "display_name": "HREX", | 152 | "display_name": "HREX", | ||
153 | "id": "2fde1a5e-e529-4919-94b6-f0c3cda6aec4", | 153 | "id": "2fde1a5e-e529-4919-94b6-f0c3cda6aec4", | ||
154 | "name": "HREX", | 154 | "name": "HREX", | ||
155 | "state": "active", | 155 | "state": "active", | ||
156 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
157 | }, | 157 | }, | ||
158 | { | 158 | { | ||
159 | "display_name": "Harzianin HK-VI", | 159 | "display_name": "Harzianin HK-VI", | ||
160 | "id": "e69309bb-def9-4e98-9f4d-4d197fb36c17", | 160 | "id": "e69309bb-def9-4e98-9f4d-4d197fb36c17", | ||
161 | "name": "Harzianin HK-VI", | 161 | "name": "Harzianin HK-VI", | ||
162 | "state": "active", | 162 | "state": "active", | ||
163 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
164 | }, | 164 | }, | ||
165 | { | 165 | { | ||
166 | "display_name": "MD", | 166 | "display_name": "MD", | ||
167 | "id": "89bcf141-9d37-45a4-a359-00ff14e462e2", | 167 | "id": "89bcf141-9d37-45a4-a359-00ff14e462e2", | ||
168 | "name": "MD", | 168 | "name": "MD", | ||
169 | "state": "active", | 169 | "state": "active", | ||
170 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
171 | }, | 171 | }, | ||
172 | { | 172 | { | ||
173 | "display_name": "Molecular-Dynamics Simulations", | 173 | "display_name": "Molecular-Dynamics Simulations", | ||
174 | "id": "ae6c36a8-6ca5-411f-8d40-0ce88b7bda67", | 174 | "id": "ae6c36a8-6ca5-411f-8d40-0ce88b7bda67", | ||
175 | "name": "Molecular-Dynamics Simulations", | 175 | "name": "Molecular-Dynamics Simulations", | ||
176 | "state": "active", | 176 | "state": "active", | ||
177 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
178 | }, | 178 | }, | ||
179 | { | 179 | { | ||
180 | "display_name": "Peptaibol", | 180 | "display_name": "Peptaibol", | ||
181 | "id": "07b75d2f-03bd-4218-a3f5-fc73008e9931", | 181 | "id": "07b75d2f-03bd-4218-a3f5-fc73008e9931", | ||
182 | "name": "Peptaibol", | 182 | "name": "Peptaibol", | ||
183 | "state": "active", | 183 | "state": "active", | ||
184 | "vocabulary_id": null | 184 | "vocabulary_id": null | ||
185 | }, | 185 | }, | ||
186 | { | 186 | { | ||
187 | "display_name": "Peptide", | 187 | "display_name": "Peptide", | ||
188 | "id": "e5536348-61b5-4a5e-99d0-5b197c5e4345", | 188 | "id": "e5536348-61b5-4a5e-99d0-5b197c5e4345", | ||
189 | "name": "Peptide", | 189 | "name": "Peptide", | ||
190 | "state": "active", | 190 | "state": "active", | ||
191 | "vocabulary_id": null | 191 | "vocabulary_id": null | ||
192 | }, | 192 | }, | ||
193 | { | 193 | { | ||
194 | "display_name": "density functional tight binding", | 194 | "display_name": "density functional tight binding", | ||
195 | "id": "55eb178e-fd6d-4f5b-8f46-2f0d11376209", | 195 | "id": "55eb178e-fd6d-4f5b-8f46-2f0d11376209", | ||
196 | "name": "density functional tight binding", | 196 | "name": "density functional tight binding", | ||
197 | "state": "active", | 197 | "state": "active", | ||
198 | "vocabulary_id": null | 198 | "vocabulary_id": null | ||
199 | }, | 199 | }, | ||
200 | { | 200 | { | ||
201 | "display_name": "dftb", | 201 | "display_name": "dftb", | ||
202 | "id": "8115d1a7-b8d4-4f33-ba6d-8ee16516b836", | 202 | "id": "8115d1a7-b8d4-4f33-ba6d-8ee16516b836", | ||
203 | "name": "dftb", | 203 | "name": "dftb", | ||
204 | "state": "active", | 204 | "state": "active", | ||
205 | "vocabulary_id": null | 205 | "vocabulary_id": null | ||
206 | }, | 206 | }, | ||
207 | { | 207 | { | ||
208 | "display_name": "dimyristoylphosphatidylcholine bilayer", | 208 | "display_name": "dimyristoylphosphatidylcholine bilayer", | ||
209 | "id": "317d0a33-2a27-4db8-bade-b96bf3b1f239", | 209 | "id": "317d0a33-2a27-4db8-bade-b96bf3b1f239", | ||
210 | "name": "dimyristoylphosphatidylcholine bilayer", | 210 | "name": "dimyristoylphosphatidylcholine bilayer", | ||
211 | "state": "active", | 211 | "state": "active", | ||
212 | "vocabulary_id": null | 212 | "vocabulary_id": null | ||
213 | }, | 213 | }, | ||
214 | { | 214 | { | ||
215 | "display_name": "enhanced sampling", | 215 | "display_name": "enhanced sampling", | ||
216 | "id": "1640ef19-c03d-4db1-b16b-ad40e764f01d", | 216 | "id": "1640ef19-c03d-4db1-b16b-ad40e764f01d", | ||
217 | "name": "enhanced sampling", | 217 | "name": "enhanced sampling", | ||
218 | "state": "active", | 218 | "state": "active", | ||
219 | "vocabulary_id": null | 219 | "vocabulary_id": null | ||
220 | }, | 220 | }, | ||
221 | { | 221 | { | ||
222 | "display_name": "free energy simulations", | 222 | "display_name": "free energy simulations", | ||
223 | "id": "ba89a1b2-2f0a-4aef-8bc2-8cc67d0029ed", | 223 | "id": "ba89a1b2-2f0a-4aef-8bc2-8cc67d0029ed", | ||
224 | "name": "free energy simulations", | 224 | "name": "free energy simulations", | ||
225 | "state": "active", | 225 | "state": "active", | ||
226 | "vocabulary_id": null | 226 | "vocabulary_id": null | ||
227 | }, | 227 | }, | ||
228 | { | 228 | { | ||
229 | "display_name": "hamiltonian replica exchange", | 229 | "display_name": "hamiltonian replica exchange", | ||
230 | "id": "ff704542-6841-496f-86b3-64362d022901", | 230 | "id": "ff704542-6841-496f-86b3-64362d022901", | ||
231 | "name": "hamiltonian replica exchange", | 231 | "name": "hamiltonian replica exchange", | ||
232 | "state": "active", | 232 | "state": "active", | ||
233 | "vocabulary_id": null | 233 | "vocabulary_id": null | ||
234 | }, | 234 | }, | ||
235 | { | 235 | { | ||
236 | "display_name": "hybrid QM-MM simulations", | 236 | "display_name": "hybrid QM-MM simulations", | ||
237 | "id": "77389d34-4484-4c56-bdbf-056aed289355", | 237 | "id": "77389d34-4484-4c56-bdbf-056aed289355", | ||
238 | "name": "hybrid QM-MM simulations", | 238 | "name": "hybrid QM-MM simulations", | ||
239 | "state": "active", | 239 | "state": "active", | ||
240 | "vocabulary_id": null | 240 | "vocabulary_id": null | ||
241 | }, | 241 | }, | ||
242 | { | 242 | { | ||
243 | "display_name": "hydrophobic peptides", | 243 | "display_name": "hydrophobic peptides", | ||
244 | "id": "5992c663-92bb-43bd-aec2-c9ac9ef126bb", | 244 | "id": "5992c663-92bb-43bd-aec2-c9ac9ef126bb", | ||
245 | "name": "hydrophobic peptides", | 245 | "name": "hydrophobic peptides", | ||
246 | "state": "active", | 246 | "state": "active", | ||
247 | "vocabulary_id": null | 247 | "vocabulary_id": null | ||
248 | }, | 248 | }, | ||
249 | { | 249 | { | ||
250 | "display_name": "membrane-active peptides", | 250 | "display_name": "membrane-active peptides", | ||
251 | "id": "47f36a48-5883-473a-beae-0e43b67222f9", | 251 | "id": "47f36a48-5883-473a-beae-0e43b67222f9", | ||
252 | "name": "membrane-active peptides", | 252 | "name": "membrane-active peptides", | ||
253 | "state": "active", | 253 | "state": "active", | ||
254 | "vocabulary_id": null | 254 | "vocabulary_id": null | ||
255 | }, | 255 | }, | ||
256 | { | 256 | { | ||
257 | "display_name": "metadynamics", | 257 | "display_name": "metadynamics", | ||
258 | "id": "0154510a-4d5a-491c-915f-cf5db408014a", | 258 | "id": "0154510a-4d5a-491c-915f-cf5db408014a", | ||
259 | "name": "metadynamics", | 259 | "name": "metadynamics", | ||
260 | "state": "active", | 260 | "state": "active", | ||
261 | "vocabulary_id": null | 261 | "vocabulary_id": null | ||
262 | }, | 262 | }, | ||
263 | { | 263 | { | ||
264 | "display_name": "molecular mechanics", | 264 | "display_name": "molecular mechanics", | ||
265 | "id": "43a935db-3278-4217-9278-c4e7b7ea0074", | 265 | "id": "43a935db-3278-4217-9278-c4e7b7ea0074", | ||
266 | "name": "molecular mechanics", | 266 | "name": "molecular mechanics", | ||
267 | "state": "active", | 267 | "state": "active", | ||
268 | "vocabulary_id": null | 268 | "vocabulary_id": null | ||
269 | }, | 269 | }, | ||
270 | { | 270 | { | ||
271 | "display_name": "reaction coordinates", | 271 | "display_name": "reaction coordinates", | ||
272 | "id": "b74d98b4-7501-4864-9ffa-869f3c0457ff", | 272 | "id": "b74d98b4-7501-4864-9ffa-869f3c0457ff", | ||
273 | "name": "reaction coordinates", | 273 | "name": "reaction coordinates", | ||
274 | "state": "active", | 274 | "state": "active", | ||
275 | "vocabulary_id": null | 275 | "vocabulary_id": null | ||
276 | }, | 276 | }, | ||
277 | { | 277 | { | ||
278 | "display_name": "structural studies", | 278 | "display_name": "structural studies", | ||
279 | "id": "f2dbed03-168f-4bfe-bb45-2bd7e6f4d68d", | 279 | "id": "f2dbed03-168f-4bfe-bb45-2bd7e6f4d68d", | ||
280 | "name": "structural studies", | 280 | "name": "structural studies", | ||
281 | "state": "active", | 281 | "state": "active", | ||
282 | "vocabulary_id": null | 282 | "vocabulary_id": null | ||
283 | }, | 283 | }, | ||
284 | { | 284 | { | ||
285 | "display_name": "thioldisulfide exchange", | 285 | "display_name": "thioldisulfide exchange", | ||
286 | "id": "e363d932-1312-4cb1-b638-b4f87dc1a5fc", | 286 | "id": "e363d932-1312-4cb1-b638-b4f87dc1a5fc", | ||
287 | "name": "thioldisulfide exchange", | 287 | "name": "thioldisulfide exchange", | ||
288 | "state": "active", | 288 | "state": "active", | ||
289 | "vocabulary_id": null | 289 | "vocabulary_id": null | ||
290 | }, | 290 | }, | ||
291 | { | 291 | { | ||
292 | "display_name": "umbrella sampling", | 292 | "display_name": "umbrella sampling", | ||
293 | "id": "eccfb9a5-ed43-475a-a3a6-494826970a2a", | 293 | "id": "eccfb9a5-ed43-475a-a3a6-494826970a2a", | ||
294 | "name": "umbrella sampling", | 294 | "name": "umbrella sampling", | ||
295 | "state": "active", | 295 | "state": "active", | ||
296 | "vocabulary_id": null | 296 | "vocabulary_id": null | ||
297 | } | 297 | } | ||
298 | ], | 298 | ], | ||
299 | "title": "Investigation of the dynamic nature of proteins with | 299 | "title": "Investigation of the dynamic nature of proteins with | ||
300 | enhanced sampling techniques", | 300 | enhanced sampling techniques", | ||
301 | "type": "vdataset", | 301 | "type": "vdataset", | ||
302 | "url": "https://doi.org/10.35097/1165" | 302 | "url": "https://doi.org/10.35097/1165" | ||
303 | } | 303 | } |