This dataset contains the ground-truth intersection regulators for a majority of intersections of the city of Hannover, Germany. The ground-truth information is used in order to apply machine learning techniques on (car) GPS trajectory data in order to automatically detect the intersection regulation.
![Rules](https://data.uni-hannover.de/dataset/1123552a-7946-4924-bbbc-aa7fbc6a800f/resource/0d5185cf-1a67-4374-97c7-397b65dad394/download/hannover_rules_1.png)
The GPS trajectories related to specifically this dataset are (also) available under: https://doi.org/10.25835/9bidqxvl
Data Acquisition
The ground-truth information are acquired by visiting them on-site and apply manual labeling of each intersection arm individually. Furthermore, satellite images and street-level images were considered but only on a minor degree as on-site labeling is found to be more precise and up-to-date.
Related Publications:
-
Zourlidou, S., Sester, M. and Hu, S. (2022): Recognition of Intersection Traffic Regulations From Crowdsourced Data. Preprints 2022, 2022070012. DOI: 10.20944/preprints202207.0012.v1
-
Zourlidou, S., Golze, J. and Sester, M. (2022): Traffic Regulation Recognition using Crowd-Sensed GPS and Map Data: a Hybrid Approach, AGILE GIScience Ser., 3, 22, 2022. https://doi.org/10.5194/agile-giss-3-22-2022
-
Cheng, H., Lei, H., Zourlidou, S., Sester, M. (2022): Traffic Control Recognition with an Attention Mechanism Using Speed-Profile and Satellite Imagery data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022, S. 287–29. https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-287-2022
-
Wang, C., Zourlidou, S., Golze, J. and Sester, M. (2020): Trajectory analysis at intersections for traffic rule identification. Geo-spatial Information Science, 11(4):1-10. https://doi.org/10.1080/10095020.2020.1843374
-
Cheng, H., Zourlidou, S. and Sester, M. (2020): Traffic Control Recognition with Speed-Profiles: A Deep Learning Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 652. https://doi.org/10.3390/ijgi9110652
-
Golze, J., Zourlidou, S. and Sester, M. (2020): Traffic Regulator Detection Using GPS Trajectories. KN J. Cartogr. Geogr. Inf. https://doi.org/10.1007/s42489-020-00048-x
-
Zourlidou, S., Fischer, C. and Sester, M. (2019): Classification of street junctions according to traffic regulators. In: Kyriakidis, P., Hadjimitsis, D., Skarlatos, D. and Mansourian, A., (eds) 2019. Accepted short papers and posters from the 22nd AGILE conference on geo-information science. Cyprus University of Technology 17–20 June 2019, Limassol, Cyprus.
Related Datasets:
-
Zourlidou, S., Golze, J. and Sester, M. (2022). Dataset: GPS Trajectory Dataset of the Region of Hannover, Germany. https://doi.org/10.25835/9bidqxvl
-
Zourlidou, S., Golze, J. and Sester, M. (2022). Dataset: Traffic Regulator Ground-truth Information for the Chicago Trajectory Dataset. https://doi.org/10.25835/0vifyzqi
-
Zourlidou, S., Golze, J. and Sester, M. (2022). Dataset: GPS Trajectory Dataset and Traffic Regulation Information of the Region of Edessa, Greece. https://doi.org/10.25835/v0mzwob3
-
Zourlidou, S., Golze, J. and Sester, M. (2020). Dataset: Speed profiles and GPS Trajectories for Traffic Rule Recognition (6 Junctions, Hannover, Germany). https://doi.org/10.25835/0043786