You're currently viewing an old version of this dataset. To see the current version, click here.

Hydraulic conductivity and experiments of sediment beds

In marine environments, sediments from different sources are stirred and dispersed, generating beds that are composed of mixed and layered sediments of differing grain sizes. Traditional engineering formulations used to predict erosion thresholds are however, generally for unimodal sediment distributions, and so may be inadequate for commonly occurring coastal sediments. We tested the transport behavior of deposited and mixed sediment beds consisting of a simplified two-grain fraction (silt (D50 = 55 µm) and sand (D50 = 300 µm)) in a laboratory-based annular flume with the objective of investigating the parameters controlling the stability of a sediment bed. To mimic recent deposition of particles following large storm events and the longer-term result of the incorporation of fines in coarse sediment, we designed two suites of experiments: (1) "the layering experiment": in which a sandy bed was covered by a thin layer of silt of varying thickness (0.2 - 3 mm; 0.5 - 3.7 wt %, dry weight in a layer 10 cm deep); and (2) "the mixing experiment" where the bed was composed of sand homogeneously mixed with small amounts of silt (0.07 - 0.7 wt %, dry weight). To initiate erosion and to detect a possible stabilizing effect in both settings, we increased the flow speeds in increments up to 0.30 m/s. Results showed that the sediment bed (or the underlying sand bed in the case of the layering experiment) stabilized with increasing silt composition. The increasing sediment stability was defined by a shift of the initial threshold conditions towards higher flow speeds, combined with, in the case of the mixed bed, decreasing erosion rates. Our results show that even extremely low concentrations of silt play a stabilizing role (1.4% silt (wt %) on a layered sediment bed of 10 cm thickness). In the case of a mixed sediment bed, 0.18% silt (wt %, in a sample of 10 cm depth) stabilized the bed. Both cases show that the depositional history of the sediment fractions can change the erosion characteristics of the seabed. These observations are summarized in a conceptual model that suggests that, in addition to the effect on surface roughness, silt stabilizes the sand bed by pore-space plugging and reducing the inflow in the bed, and hence increases the bed stability. Measurements of hydraulic conductivity on similar bed assemblages qualitatively supported this conclusion by showing that silt could decrease the permeability by up to 22% in the case of a layered bed and by up to 70% in the case of a mixed bed.

Data and Resources

This dataset has no data

Cite this as

Bartzke, Gerhard, Bryan, Karin R, Pilditch, Conrad A, Huhn, Katrin (2013). Dataset: Hydraulic conductivity and experiments of sediment beds. https://doi.org/10.1594/PANGAEA.821648

DOI retrieved: 2013

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.821648
Author Bartzke, Gerhard
Given Name Gerhard
Family Name Bartzke
More Authors
Bryan, Karin R
Pilditch, Conrad A
Huhn, Katrin
Source Creation 2013
Publication Year 2013
Resource Type application/zip - filename: Bartzke_2013
Subject Areas
Name: Lithosphere

Related Identifiers
Title: On the stabilizing influence of silt on sand beds
Identifier: https://doi.org/10.2110/jsr.2013.57
Type: DOI
Relation: IsSupplementTo
Year: 2013
Source: Journal of Sedimentary Research
Authors: Bartzke Gerhard , Bryan Karin R , Pilditch Conrad A , Huhn Katrin .