Seawater carbonate chemistry and net community production and net ecosystem calcification in tide pools

Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, pCO2, net ecosystem calcification (NEC), and O2 concentrations were strongly related to rates of net community production (NCP). CO2 was added to pools during daytime low tides, which should have reduced pH and enhanced pCO2. However, photosynthesis rapidly reduced pCO2 and increased pH, so effects of CO2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO2 addition caused pH to decline by ∼0.6 units and pCO2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO2 addition declined because more CO2 was absorbed due to photosynthesis. Effects of CO2addition were, therefore, modified by feedbacks between NCP, pH, pCO2, and NEC. Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

Data and Resources

This dataset has no data

Cite this as

Bracken, Matthew E S, Silbiger, N J, Bernatchez, Genevieve, Sorte, Cascade J B (2018). Dataset: Seawater carbonate chemistry and net community production and net ecosystem calcification in tide pools. https://doi.org/10.1594/PANGAEA.924379

DOI retrieved: 2018

Additional Info

Field Value
Imported on December 1, 2024
Last update December 1, 2024
License CC-BY-4.0
Source https://doi.org/10.1594/PANGAEA.924379
Author Bracken, Matthew E S
Given Name Matthew E S
Family Name Bracken
More Authors
Silbiger, N J
Bernatchez, Genevieve
Sorte, Cascade J B
Source Creation 2018
Publication Year 2018
Resource Type text/tab-separated-values - filename: Bracken-etal_2018_PeerJ
Subject Areas
Name: Chemistry

Related Identifiers
Title: Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem
Identifier: https://doi.org/10.7717/peerj.4739
Type: DOI
Relation: References
Year: 2018
Source: PeerJ
Authors: Bracken Matthew E S , Silbiger N J , Bernatchez Genevieve , Sorte Cascade J B , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .

Title: seacarb: seawater carbonate chemistry with R. R package version 3.2.14
Identifier: https://CRAN.R-project.org/package=seacarb
Type: DOI
Relation: References
Year: 2020
Authors: Bracken Matthew E S , Silbiger N J , Bernatchez Genevieve , Sorte Cascade J B , Gattuso Jean-Pierre , Epitalon Jean-Marie , Lavigne Héloïse , Orr James , Gentili Bernard , Hagens Mathilde , Hofmann Andreas , Mueller Jens-Daniel , Proye Aurélien , Rae James , Soetaert Karline .