Simulated and observed bvoc exchange, gpp and biomass from maize, oil-seed rape and ryegrass

Abstract: BVOCs vary widely among different crops, an aspect that has been largely neglected in emission inventories. In particular, bioenergy-related species can emit mixtures of highly reactive compounds that have received little attention so far. For such species, long-term field observations of BVOC exchange from relevant crops covering different phenological phases are scarcely available. Therefore, we measured and modelled the emission of three prominent European bioenergy crops (maize, ryegrass, and oil-seed rape) for full rotations in north-eastern Germany. Using a proton transfer reaction–mass spectrometer combined with automatically-moving large canopy chambers, we were able to quantify the characteristic seasonal BVOC flux dynamics of each crop species. The measured BVOC fluxes were used to parameterize and evaluate the BVOC emission module (JJv) of the physiology-oriented LandscapeDNDC model, which was enhanced to cover de novo emissions as well as those from plant storage pools. Parameters are defined for each compound individually. The model is used for simulating total compound-specific reactivity over several years and also to evaluate the importance of these emissions for air chemistry. We can demonstrate substantial differences between the investigated crops with oil-seed rape having 37-fold higher total annual emissions than maize. However, due to a higher chemical reactivity of the emitted blend in maize, potential impacts on atmospheric OH-chemistry are only 6-fold higher.

Cite this as

Havermann, Felix (2022). Dataset: Simulated and observed bvoc exchange, gpp and biomass from maize, oil-seed rape and ryegrass. https://doi.org/10.35097/561

DOI retrieved: 2022

Additional Info

Field Value
Imported on January 12, 2023
Last update August 4, 2023
License CC BY 4.0 Attribution
Source https://doi.org/10.35097/561
Author Havermann, Felix
Source Creation 2022
Publishers
Karlsruhe Institute of Technology (KIT)
Production Year 2022
Publication Year 2022
Subject Areas
Name: Geological Science

Name: Other
Additional: Biogeochemie

Related Identifiers
Identifier: 10.1029/2021MS002683
Type: DOI
Relation: IsSupplementTo