Changes
On April 18, 2024 at 4:20:32 PM UTC, Samer Sakor:
-
Changed value of field
doi_date_published
to2024-04-18
in The Family KG -
Changed value of field
doi_status
toTrue
in The Family KG
f | 1 | { | f | 1 | { |
2 | "author": "Stanley Kok", | 2 | "author": "Stanley Kok", | ||
3 | "author_email": "koks@cs.washington.edu", | 3 | "author_email": "koks@cs.washington.edu", | ||
4 | "creator_user_id": "f7cd6563-f944-40d2-b88a-ec1b2ccfc7d1", | 4 | "creator_user_id": "f7cd6563-f944-40d2-b88a-ec1b2ccfc7d1", | ||
5 | "doi": "10.57702/vu5ceumt", | 5 | "doi": "10.57702/vu5ceumt", | ||
n | 6 | "doi_date_published": null, | n | 6 | "doi_date_published": "2024-04-18", |
7 | "doi_publisher": "TIB", | 7 | "doi_publisher": "TIB", | ||
n | 8 | "doi_status": false, | n | 8 | "doi_status": true, |
9 | "domain": "https://service.tib.eu/ldmservice", | 9 | "domain": "https://service.tib.eu/ldmservice", | ||
10 | "extra_authors": [ | 10 | "extra_authors": [ | ||
11 | { | 11 | { | ||
12 | "extra_author": "Pedro Domingos", | 12 | "extra_author": "Pedro Domingos", | ||
13 | "orcid": "" | 13 | "orcid": "" | ||
14 | } | 14 | } | ||
15 | ], | 15 | ], | ||
16 | "extras": [ | 16 | "extras": [ | ||
17 | { | 17 | { | ||
18 | "__extras": { | 18 | "__extras": { | ||
19 | "id": "57d32ee7-d79c-4392-89bd-8320d230e9bc", | 19 | "id": "57d32ee7-d79c-4392-89bd-8320d230e9bc", | ||
20 | "package_id": "6f25152d-d202-4bf4-8575-b9388b2a71b8", | 20 | "package_id": "6f25152d-d202-4bf4-8575-b9388b2a71b8", | ||
21 | "state": "active" | 21 | "state": "active" | ||
22 | }, | 22 | }, | ||
23 | "key": "", | 23 | "key": "", | ||
24 | "value": "" | 24 | "value": "" | ||
25 | } | 25 | } | ||
26 | ], | 26 | ], | ||
27 | "groups": [], | 27 | "groups": [], | ||
28 | "id": "6f25152d-d202-4bf4-8575-b9388b2a71b8", | 28 | "id": "6f25152d-d202-4bf4-8575-b9388b2a71b8", | ||
29 | "isopen": false, | 29 | "isopen": false, | ||
30 | "license_id": "notspecified", | 30 | "license_id": "notspecified", | ||
31 | "license_title": "License not specified", | 31 | "license_title": "License not specified", | ||
32 | "maintainer": "", | 32 | "maintainer": "", | ||
33 | "maintainer_email": "", | 33 | "maintainer_email": "", | ||
34 | "metadata_created": "2024-04-18T16:20:13.264332", | 34 | "metadata_created": "2024-04-18T16:20:13.264332", | ||
n | 35 | "metadata_modified": "2024-04-18T16:20:30.891356", | n | 35 | "metadata_modified": "2024-04-18T16:20:31.005523", |
36 | "name": "the-family-kg", | 36 | "name": "the-family-kg", | ||
37 | "notes": "Statistical predicate invention is considered a key | 37 | "notes": "Statistical predicate invention is considered a key | ||
38 | problem in statistical relational learning. SPI involves discovering | 38 | problem in statistical relational learning. SPI involves discovering | ||
39 | new concepts, properties, and relations within structured data, | 39 | new concepts, properties, and relations within structured data, | ||
40 | extending beyond mere discovery of hidden variables within statistical | 40 | extending beyond mere discovery of hidden variables within statistical | ||
41 | models and predicate invention within ILP. An initial model for SPI is | 41 | models and predicate invention within ILP. An initial model for SPI is | ||
42 | proposed, based on second-order Markov logic, wherein predicates as | 42 | proposed, based on second-order Markov logic, wherein predicates as | ||
43 | well as arguments can be variables, and the domain of discourse is not | 43 | well as arguments can be variables, and the domain of discourse is not | ||
44 | fully known in advance. The approach iteratively refines clusters of | 44 | fully known in advance. The approach iteratively refines clusters of | ||
45 | symbols based on the clusters of symbols they appear in atoms with | 45 | symbols based on the clusters of symbols they appear in atoms with | ||
46 | (e.g., it clusters relations by the clusters of the objects they | 46 | (e.g., it clusters relations by the clusters of the objects they | ||
47 | relate). Since different clusterings are better for predicting | 47 | relate). Since different clusterings are better for predicting | ||
48 | different subsets of the atoms, multiple cross-cutting clusterings are | 48 | different subsets of the atoms, multiple cross-cutting clusterings are | ||
49 | allowed. This approach is shown to outperform Markov logic structure | 49 | allowed. This approach is shown to outperform Markov logic structure | ||
50 | learning and the recently introduced infinite relational model on a | 50 | learning and the recently introduced infinite relational model on a | ||
51 | number of relational datasets.", | 51 | number of relational datasets.", | ||
52 | "num_resources": 1, | 52 | "num_resources": 1, | ||
53 | "num_tags": 1, | 53 | "num_tags": 1, | ||
54 | "orcid": "", | 54 | "orcid": "", | ||
55 | "organization": { | 55 | "organization": { | ||
56 | "approval_status": "approved", | 56 | "approval_status": "approved", | ||
57 | "created": "2017-11-23T17:30:37.757128", | 57 | "created": "2017-11-23T17:30:37.757128", | ||
58 | "description": "The German National Library of Science and | 58 | "description": "The German National Library of Science and | ||
59 | Technology, abbreviated TIB, is the national library of the Federal | 59 | Technology, abbreviated TIB, is the national library of the Federal | ||
60 | Republic of Germany for all fields of engineering, technology, and the | 60 | Republic of Germany for all fields of engineering, technology, and the | ||
61 | natural sciences.", | 61 | natural sciences.", | ||
62 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 62 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
63 | "image_url": | 63 | "image_url": | ||
64 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | 64 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | ||
65 | "is_organization": true, | 65 | "is_organization": true, | ||
66 | "name": "tib", | 66 | "name": "tib", | ||
67 | "state": "active", | 67 | "state": "active", | ||
68 | "title": "TIB", | 68 | "title": "TIB", | ||
69 | "type": "organization" | 69 | "type": "organization" | ||
70 | }, | 70 | }, | ||
71 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 71 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
72 | "private": false, | 72 | "private": false, | ||
73 | "relationships_as_object": [], | 73 | "relationships_as_object": [], | ||
74 | "relationships_as_subject": [], | 74 | "relationships_as_subject": [], | ||
75 | "resources": [ | 75 | "resources": [ | ||
76 | { | 76 | { | ||
77 | "auto_update_last_update": "", | 77 | "auto_update_last_update": "", | ||
78 | "cache_last_updated": null, | 78 | "cache_last_updated": null, | ||
79 | "cache_url": null, | 79 | "cache_url": null, | ||
80 | "created": "2024-04-18T16:20:30.898938", | 80 | "created": "2024-04-18T16:20:30.898938", | ||
81 | "description": "", | 81 | "description": "", | ||
82 | "format": "", | 82 | "format": "", | ||
83 | "hash": "", | 83 | "hash": "", | ||
84 | "id": "82f5eb44-719b-45b3-b49d-61920ab31ae2", | 84 | "id": "82f5eb44-719b-45b3-b49d-61920ab31ae2", | ||
85 | "last_modified": null, | 85 | "last_modified": null, | ||
86 | "metadata_modified": "2024-04-18T16:20:30.894175", | 86 | "metadata_modified": "2024-04-18T16:20:30.894175", | ||
87 | "mimetype": null, | 87 | "mimetype": null, | ||
88 | "mimetype_inner": null, | 88 | "mimetype_inner": null, | ||
89 | "name": "Family_KG", | 89 | "name": "Family_KG", | ||
90 | "package_id": "6f25152d-d202-4bf4-8575-b9388b2a71b8", | 90 | "package_id": "6f25152d-d202-4bf4-8575-b9388b2a71b8", | ||
91 | "position": 0, | 91 | "position": 0, | ||
92 | "resource_type": null, | 92 | "resource_type": null, | ||
93 | "size": null, | 93 | "size": null, | ||
94 | "state": "active", | 94 | "state": "active", | ||
95 | "url": | 95 | "url": | ||
96 | ps://github.com/SDM-TIB/SPARKLE/tree/main/Results/Family_KG/Baseline", | 96 | ps://github.com/SDM-TIB/SPARKLE/tree/main/Results/Family_KG/Baseline", | ||
97 | "url_type": null | 97 | "url_type": null | ||
98 | } | 98 | } | ||
99 | ], | 99 | ], | ||
100 | "services_used_list": "", | 100 | "services_used_list": "", | ||
t | 101 | "state": "draft", | t | 101 | "state": "active", |
102 | "tags": [ | 102 | "tags": [ | ||
103 | { | 103 | { | ||
104 | "display_name": "Benchmark", | 104 | "display_name": "Benchmark", | ||
105 | "id": "70474eb4-f8bf-42f1-bf26-7511d4f3356c", | 105 | "id": "70474eb4-f8bf-42f1-bf26-7511d4f3356c", | ||
106 | "name": "Benchmark", | 106 | "name": "Benchmark", | ||
107 | "state": "active", | 107 | "state": "active", | ||
108 | "vocabulary_id": null | 108 | "vocabulary_id": null | ||
109 | } | 109 | } | ||
110 | ], | 110 | ], | ||
111 | "title": "The Family KG", | 111 | "title": "The Family KG", | ||
112 | "type": "dataset", | 112 | "type": "dataset", | ||
113 | "url": "https://dl.acm.org/doi/pdf/10.1145/1273496.1273551", | 113 | "url": "https://dl.acm.org/doi/pdf/10.1145/1273496.1273551", | ||
114 | "version": "" | 114 | "version": "" | ||
115 | } | 115 | } |