f | { | f | { |
| "access_rights": "Public", | | "access_rights": "Public", |
| "accrualPeriodicity": "", | | "accrualPeriodicity": "", |
| "author": "Disha Purohit", | | "author": "Disha Purohit", |
| "author_email": "disha.purohit@tib.eu", | | "author_email": "disha.purohit@tib.eu", |
| "citation": [], | | "citation": [], |
| "conformsTo": "", | | "conformsTo": "", |
| "creator_user_id": "f7cd6563-f944-40d2-b88a-ec1b2ccfc7d1", | | "creator_user_id": "f7cd6563-f944-40d2-b88a-ec1b2ccfc7d1", |
| "defined_in": "", | | "defined_in": "", |
| "doi": "10.57702/38jfs1vi", | | "doi": "10.57702/38jfs1vi", |
| "doi_date_published": "2024-09-19", | | "doi_date_published": "2024-09-19", |
| "doi_publisher": "TIB", | | "doi_publisher": "TIB", |
| "doi_status": true, | | "doi_status": true, |
| "domain": "https://service.tib.eu/ldmservice", | | "domain": "https://service.tib.eu/ldmservice", |
| "end_date": "", | | "end_date": "", |
| "extra_authors": [ | | "extra_authors": [ |
| { | | { |
| "extra_author": "Yashrajsinh Chudasama", | | "extra_author": "Yashrajsinh Chudasama", |
| "orcid": "https://orcid.org/0000-0003-3422-366X" | | "orcid": "https://orcid.org/0000-0003-3422-366X" |
| }, | | }, |
| { | | { |
| "extra_author": "Maria Torrente", | | "extra_author": "Maria Torrente", |
| "orcid": "" | | "orcid": "" |
| }, | | }, |
| { | | { |
| "extra_author": "Maria-Esther Vidal", | | "extra_author": "Maria-Esther Vidal", |
| "orcid": "https://orcid.org/0000-0003-1160-8727" | | "orcid": "https://orcid.org/0000-0003-1160-8727" |
| } | | } |
| ], | | ], |
| "extras": [ | | "extras": [ |
| { | | { |
| "__extras": { | | "__extras": { |
| "id": "28a8a7b6-fd8e-41e8-99ee-0bb934b922af", | | "id": "28a8a7b6-fd8e-41e8-99ee-0bb934b922af", |
| "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", |
| "state": "active" | | "state": "active" |
| }, | | }, |
| "key": "", | | "key": "", |
| "value": "" | | "value": "" |
| } | | } |
| ], | | ], |
| "groups": [], | | "groups": [], |
| "id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | | "id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", |
| "isopen": true, | | "isopen": true, |
| "landing_page": "", | | "landing_page": "", |
| "language": "English", | | "language": "English", |
| "license_id": "cc-by", | | "license_id": "cc-by", |
| "license_title": "Creative Commons Attribution", | | "license_title": "Creative Commons Attribution", |
| "license_url": "http://www.opendefinition.org/licenses/cc-by", | | "license_url": "http://www.opendefinition.org/licenses/cc-by", |
| "link_orkg": "", | | "link_orkg": "", |
| "maintainer": "Disha Purohit", | | "maintainer": "Disha Purohit", |
| "maintainer_email": "disha.purohit@tib.eu", | | "maintainer_email": "disha.purohit@tib.eu", |
| "metadata_created": "2024-09-19T13:44:11.745534", | | "metadata_created": "2024-09-19T13:44:11.745534", |
n | "metadata_modified": "2024-10-01T15:32:00.293121", | n | "metadata_modified": "2024-10-01T15:33:07.656250", |
| "name": | | "name": |
| -and-invalidated-symbolic-explanations-for-knowledge-graph-integrity", | | -and-invalidated-symbolic-explanations-for-knowledge-graph-integrity", |
| "notes": "VISE represents a novel hybrid strategy that integrates | | "notes": "VISE represents a novel hybrid strategy that integrates |
| symbolic learning, constraint validation, and numerical learning | | symbolic learning, constraint validation, and numerical learning |
| approaches. VISE employs KGE to capture implicit information and | | approaches. VISE employs KGE to capture implicit information and |
| represent negation in KGs, thereby enhancing the prediction | | represent negation in KGs, thereby enhancing the prediction |
| performance of numerical models. The experimental results demonstrate | | performance of numerical models. The experimental results demonstrate |
| the efficacy of this hybrid technique, which effectively integrates | | the efficacy of this hybrid technique, which effectively integrates |
| the strengths of symbolic, numerical, and constraint validation | | the strengths of symbolic, numerical, and constraint validation |
| paradigms.\r\n\r\nThis collection includes all the data necessary to | | paradigms.\r\n\r\nThis collection includes all the data necessary to |
| reproduce the results from the experimental evaluation of VISE at | | reproduce the results from the experimental evaluation of VISE at |
n | EXPLIMED @ ECAI'24.\r\nThe data is an anonymized synthetic lung cancer | n | EXPLIMED @ ECAI'24. The data is an anonymized synthetic lung cancer |
| benchmark that comprises clinical data extracted from heterogeneous | | benchmark that comprises clinical data extracted from heterogeneous |
| sources such as publications, clinical trials, and clinical records | | sources such as publications, clinical trials, and clinical records |
| representing patients diagnosed with lung cancer. We evaluate the VISE | | representing patients diagnosed with lung cancer. We evaluate the VISE |
| approach on three anonymized Lung Cancer KGs: | | approach on three anonymized Lung Cancer KGs: |
| LC-\ud835\udc3e\ud835\udc3a1, LC-\ud835\udc3e\ud835\udc3a2,and | | LC-\ud835\udc3e\ud835\udc3a1, LC-\ud835\udc3e\ud835\udc3a2,and |
t | LC-\ud835\udc3e\ud835\udc3a3\r\n\r\nThe collection comprises nine data | t | LC-\ud835\udc3e\ud835\udc3a3.\r\n\r\nThe collection comprises nine |
| sets of three different sizes:\r\n\r\n- LC Knowledge Graph 1 (LC-KG1) | | data sets of three different sizes:\r\n\r\n- LC Knowledge Graph 1 |
| models 29 lung cancer patients\r\n- LC Knowledge Graph 2 (LC-KG2) | | (LC-KG1) models 29 lung cancer patients\r\n- LC Knowledge Graph 2 |
| models 203 lung cancer patients\r\n- LC Knowledge Graph 3 (LC-KG3) | | (LC-KG2) models 203 lung cancer patients\r\n- LC Knowledge Graph 3 |
| models 319 lung cancer patients\r\n\r\nThree distinct KGs of different | | (LC-KG3) models 319 lung cancer patients\r\n\r\nThree distinct KGs of |
| sizes are available, each with its own characteristics. \r\n\r\n- | | different sizes are available, each with its own characteristics. |
| \"Original KG\": The original KG comprises of anonymized lung cancer | | \r\n\r\n- \"Original KG\": The original KG comprises of anonymized |
| patients with different medical characteristics. \r\n- \"Enriched | | lung cancer patients with different medical characteristics. \r\n- |
| KG\": Utilizes an inductive learning technique of KG completion | | \"Enriched KG\": Utilizes an inductive learning technique of KG |
| through self-supervised symbolic learning over the original KG. \r\n- | | completion through self-supervised symbolic learning over the original |
| \"Transformed KG\": Denotes a transformation of the KG depending on | | KG. \r\n- \"Transformed KG\": Denotes a transformation of the KG |
| SHACL shapes evaluated across the enriched KGs. This procedure is used | | depending on SHACL shapes evaluated across the enriched KGs. This |
| to determine the validity of the data. \r\n\r\nVISE is also evaluated | | procedure is used to determine the validity of the data. \r\n\r\nVISE |
| with KGs comprising 1242 lung cancer patients (LungCancer-OriginalKG, | | is also evaluated with KGs comprising 1242 lung cancer patients |
| LungCancer-EnrichedKG, and LungCancer-TransformedKG).\r\n", | | (LungCancer-OriginalKG, LungCancer-EnrichedKG, and |
| | | LungCancer-TransformedKG).\r\n", |
| "num_resources": 3, | | "num_resources": 3, |
| "num_tags": 2, | | "num_tags": 2, |
| "orcid": "https://orcid.org/0000-0002-1442-335X", | | "orcid": "https://orcid.org/0000-0002-1442-335X", |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2017-11-23T17:30:37.757128", | | "created": "2017-11-23T17:30:37.757128", |
| "description": "The German National Library of Science and | | "description": "The German National Library of Science and |
| Technology, abbreviated TIB, is the national library of the Federal | | Technology, abbreviated TIB, is the national library of the Federal |
| Republic of Germany for all fields of engineering, technology, and the | | Republic of Germany for all fields of engineering, technology, and the |
| natural sciences.", | | natural sciences.", |
| "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", |
| "image_url": | | "image_url": |
| 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", |
| "is_organization": true, | | "is_organization": true, |
| "name": "tib", | | "name": "tib", |
| "state": "active", | | "state": "active", |
| "title": "TIB", | | "title": "TIB", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", |
| "page": "", | | "page": "", |
| "private": false, | | "private": false, |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
| "resources": [ | | "resources": [ |
| { | | { |
| "auto_update_last_update": "", | | "auto_update_last_update": "", |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2024-09-19T13:46:00.045790", | | "created": "2024-09-19T13:46:00.045790", |
| "description": "", | | "description": "", |
| "format": "nt", | | "format": "nt", |
| "hash": "", | | "hash": "", |
| "id": "c66e1c6f-6a62-483c-bfb3-5df734377080", | | "id": "c66e1c6f-6a62-483c-bfb3-5df734377080", |
| "language": "", | | "language": "", |
| "last_modified": "2024-09-19T13:46:00.029305", | | "last_modified": "2024-09-19T13:46:00.029305", |
| "media": "", | | "media": "", |
| "metadata_modified": "2024-09-19T13:46:00.042767", | | "metadata_modified": "2024-09-19T13:46:00.042767", |
| "mimetype": null, | | "mimetype": null, |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "LungCancer-EnrichedKG", | | "name": "LungCancer-EnrichedKG", |
| "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", |
| "position": 0, | | "position": 0, |
| "resource_type": null, | | "resource_type": null, |
| "rights": "", | | "rights": "", |
| "size": 83374, | | "size": 83374, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| 6e1c6f-6a62-483c-bfb3-5df734377080/download/lungcancer-enrichedkg.nt", | | 6e1c6f-6a62-483c-bfb3-5df734377080/download/lungcancer-enrichedkg.nt", |
| "url_type": "upload" | | "url_type": "upload" |
| }, | | }, |
| { | | { |
| "auto_update_last_update": "", | | "auto_update_last_update": "", |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2024-09-19T13:46:16.047331", | | "created": "2024-09-19T13:46:16.047331", |
| "description": "", | | "description": "", |
| "format": "nt", | | "format": "nt", |
| "hash": "", | | "hash": "", |
| "id": "dab92f8a-94e6-4cd4-aa23-b5b2fcf3fe49", | | "id": "dab92f8a-94e6-4cd4-aa23-b5b2fcf3fe49", |
| "language": "", | | "language": "", |
| "last_modified": "2024-09-19T13:46:16.028996", | | "last_modified": "2024-09-19T13:46:16.028996", |
| "media": "", | | "media": "", |
| "metadata_modified": "2024-09-19T13:46:16.044253", | | "metadata_modified": "2024-09-19T13:46:16.044253", |
| "mimetype": null, | | "mimetype": null, |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "LungCancer-OriginalKG", | | "name": "LungCancer-OriginalKG", |
| "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", |
| "position": 1, | | "position": 1, |
| "resource_type": null, | | "resource_type": null, |
| "rights": "", | | "rights": "", |
| "size": 2350495, | | "size": 2350495, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| b92f8a-94e6-4cd4-aa23-b5b2fcf3fe49/download/lungcancer-originalkg.nt", | | b92f8a-94e6-4cd4-aa23-b5b2fcf3fe49/download/lungcancer-originalkg.nt", |
| "url_type": "upload" | | "url_type": "upload" |
| }, | | }, |
| { | | { |
| "auto_update_last_update": "", | | "auto_update_last_update": "", |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2024-09-19T13:46:29.670010", | | "created": "2024-09-19T13:46:29.670010", |
| "description": "", | | "description": "", |
| "format": "nt", | | "format": "nt", |
| "hash": "", | | "hash": "", |
| "id": "7e86fc74-ea50-4fa6-afec-83ddfed31b83", | | "id": "7e86fc74-ea50-4fa6-afec-83ddfed31b83", |
| "language": "", | | "language": "", |
| "last_modified": "2024-09-19T13:46:29.650972", | | "last_modified": "2024-09-19T13:46:29.650972", |
| "media": "", | | "media": "", |
| "metadata_modified": "2024-09-19T13:46:29.666624", | | "metadata_modified": "2024-09-19T13:46:29.666624", |
| "mimetype": null, | | "mimetype": null, |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "LungCancer-TransformedKG", | | "name": "LungCancer-TransformedKG", |
| "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", |
| "position": 2, | | "position": 2, |
| "resource_type": null, | | "resource_type": null, |
| "rights": "", | | "rights": "", |
| "size": 83634, | | "size": 83634, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| c74-ea50-4fa6-afec-83ddfed31b83/download/lungcancer-transformedkg.nt", | | c74-ea50-4fa6-afec-83ddfed31b83/download/lungcancer-transformedkg.nt", |
| "url_type": "upload" | | "url_type": "upload" |
| } | | } |
| ], | | ], |
| "services_used_list": "", | | "services_used_list": "", |
| "spatial": "", | | "spatial": "", |
| "spatial_resolution": "", | | "spatial_resolution": "", |
| "start_date": "", | | "start_date": "", |
| "state": "active", | | "state": "active", |
| "tags": [ | | "tags": [ |
| { | | { |
| "display_name": "Knowledge Graph", | | "display_name": "Knowledge Graph", |
| "id": "1bea6e8a-7d3e-45b6-8ebb-3c23ad1b748b", | | "id": "1bea6e8a-7d3e-45b6-8ebb-3c23ad1b748b", |
| "name": "Knowledge Graph", | | "name": "Knowledge Graph", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "Symbolic Learning", | | "display_name": "Symbolic Learning", |
| "id": "f9fd23ca-ab6c-482c-b057-06ef41faff5d", | | "id": "f9fd23ca-ab6c-482c-b057-06ef41faff5d", |
| "name": "Symbolic Learning", | | "name": "Symbolic Learning", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| } | | } |
| ], | | ], |
| "temporal_resolution": "", | | "temporal_resolution": "", |
| "title": "VISE: Validated and Invalidated Symbolic Explanations for | | "title": "VISE: Validated and Invalidated Symbolic Explanations for |
| Knowledge Graph Integrity", | | Knowledge Graph Integrity", |
| "type": "dataset", | | "type": "dataset", |
| "url": "https://github.com/SDM-TIB/VISE?tab=readme-ov-file", | | "url": "https://github.com/SDM-TIB/VISE?tab=readme-ov-file", |
| "version": "", | | "version": "", |
| "version_note": "" | | "version_note": "" |
| } | | } |