Changes
On August 4, 2023 at 8:51:46 AM UTC, admin:
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Weise, Sonja", | 2 | "author": "Weise, Sonja", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1126", | 5 | "doi": "10.35097/1126", | ||
6 | "doi_date_published": "2023", | 6 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "groups": [], | 9 | "groups": [], | ||
10 | "id": "8a86938f-e791-4562-9025-83d250ac8c61", | 10 | "id": "8a86938f-e791-4562-9025-83d250ac8c61", | ||
11 | "isopen": false, | 11 | "isopen": false, | ||
12 | "license_id": "CC BY-SA 4.0 Attribution-ShareAlike", | 12 | "license_id": "CC BY-SA 4.0 Attribution-ShareAlike", | ||
13 | "license_title": "CC BY-SA 4.0 Attribution-ShareAlike", | 13 | "license_title": "CC BY-SA 4.0 Attribution-ShareAlike", | ||
14 | "metadata_created": "2023-08-04T08:50:07.036856", | 14 | "metadata_created": "2023-08-04T08:50:07.036856", | ||
t | 15 | "metadata_modified": "2023-08-04T08:50:07.036861", | t | 15 | "metadata_modified": "2023-08-04T08:51:46.246535", |
16 | "name": "rdr-doi-10-35097-1126", | 16 | "name": "rdr-doi-10-35097-1126", | ||
17 | "notes": "Abstract: Experimentelle Daten zur Zweiphasenstr\u00f6mung | 17 | "notes": "Abstract: Experimentelle Daten zur Zweiphasenstr\u00f6mung | ||
18 | von ges\u00e4ttigtem CO2 in einem horizontalen zylindrischen Rohr | 18 | von ges\u00e4ttigtem CO2 in einem horizontalen zylindrischen Rohr | ||
19 | (Durchmesser 14 mm) mit integrierten Metallschw\u00e4mmen | 19 | (Durchmesser 14 mm) mit integrierten Metallschw\u00e4mmen | ||
20 | (offenzellige Metallsch\u00e4ume) unter adiabaten sowie diabaten | 20 | (offenzellige Metallsch\u00e4ume) unter adiabaten sowie diabaten | ||
21 | Bedingungen werden vorgestellt. Au\u00dferdem wurde der Druckverlust | 21 | Bedingungen werden vorgestellt. Au\u00dferdem wurde der Druckverlust | ||
22 | bei einphasiger Durchstr\u00f6mung derselben Schw\u00e4mme untersucht. | 22 | bei einphasiger Durchstr\u00f6mung derselben Schw\u00e4mme untersucht. | ||
23 | Die nominelle Zelldichte der Schw\u00e4mme betr\u00e4gt 10 ppi | 23 | Die nominelle Zelldichte der Schw\u00e4mme betr\u00e4gt 10 ppi | ||
24 | (\u201ePoren pro Zoll\u201c) bzw. 20 ppi. Der Massen-strom wurde von | 24 | (\u201ePoren pro Zoll\u201c) bzw. 20 ppi. Der Massen-strom wurde von | ||
25 | 25 kg/(m\u00b2s) bis 150 kg/(m\u00b2s) variiert und im Falle einer | 25 | 25 kg/(m\u00b2s) bis 150 kg/(m\u00b2s) variiert und im Falle einer | ||
26 | Zweiphasen\u00acstr\u00f6mung ebenfalls der Str\u00f6mungsdampfgehalt | 26 | Zweiphasen\u00acstr\u00f6mung ebenfalls der Str\u00f6mungsdampfgehalt | ||
27 | (von 0,1 bis 1). Der S\u00e4ttigungsdruck betrug entweder 12 bar oder | 27 | (von 0,1 bis 1). Der S\u00e4ttigungsdruck betrug entweder 12 bar oder | ||
28 | 26,5 bar. Die mit Schw\u00e4mmen gef\u00fcllte L\u00e4nge | 28 | 26,5 bar. Die mit Schw\u00e4mmen gef\u00fcllte L\u00e4nge | ||
29 | stromaufw\u00e4rts der Messstrecke variierte zwischen 12 mm und 210 mm | 29 | stromaufw\u00e4rts der Messstrecke variierte zwischen 12 mm und 210 mm | ||
30 | bei 10 ppi Schw\u00e4mmen und betrug 109 mm bei 20 ppi Schw\u00e4mmen. | 30 | bei 10 ppi Schw\u00e4mmen und betrug 109 mm bei 20 ppi Schw\u00e4mmen. | ||
31 | Zus\u00e4tzlich wurden die f\u00fcr den Druckverlust relevanten | 31 | Zus\u00e4tzlich wurden die f\u00fcr den Druckverlust relevanten | ||
32 | geometrische Eigenschaften der Schw\u00e4mme, n\u00e4mlich der | 32 | geometrische Eigenschaften der Schw\u00e4mme, n\u00e4mlich der | ||
33 | Fensterdurchmesser, der Steg\u00acdurchmesser, die Porosit\u00e4t und | 33 | Fensterdurchmesser, der Steg\u00acdurchmesser, die Porosit\u00e4t und | ||
34 | die spezifische Oberfl\u00e4che, bestimmt.\r\nAbstract: Experimental | 34 | die spezifische Oberfl\u00e4che, bestimmt.\r\nAbstract: Experimental | ||
35 | data on the adiabatic and diabatic two-phase flow of saturated CO2 in | 35 | data on the adiabatic and diabatic two-phase flow of saturated CO2 in | ||
36 | a horizontal cylindrical tube (diameter 14 mm) with integrated metal | 36 | a horizontal cylindrical tube (diameter 14 mm) with integrated metal | ||
37 | sponges (open-cell metal foams) are presented. Moreover, the pressure | 37 | sponges (open-cell metal foams) are presented. Moreover, the pressure | ||
38 | drop of single-phase flow inside the same metal sponges was | 38 | drop of single-phase flow inside the same metal sponges was | ||
39 | investigated. The nominal cell density of the sponges is 10 ppi | 39 | investigated. The nominal cell density of the sponges is 10 ppi | ||
40 | (\u201cpores per inch\u201d) or 20 ppi. The mass flow was varied from | 40 | (\u201cpores per inch\u201d) or 20 ppi. The mass flow was varied from | ||
41 | 25 kg/(m\u00b2s) to 150 kg/(m\u00b2s) and the flow vapor quality from | 41 | 25 kg/(m\u00b2s) to 150 kg/(m\u00b2s) and the flow vapor quality from | ||
42 | 0.1 to 1 in case of two-phase flow. The saturation pressure was either | 42 | 0.1 to 1 in case of two-phase flow. The saturation pressure was either | ||
43 | 12 bar or 26.5 bar. The length filled with sponges upstream of the | 43 | 12 bar or 26.5 bar. The length filled with sponges upstream of the | ||
44 | test section varied from 12 mm to 210 mm for 10 ppi sponges and was | 44 | test section varied from 12 mm to 210 mm for 10 ppi sponges and was | ||
45 | 109 mm for 20 ppi sponges. In addition, geometric properties of the | 45 | 109 mm for 20 ppi sponges. In addition, geometric properties of the | ||
46 | sponges relevant to pressure loss, such as window diameter, strut | 46 | sponges relevant to pressure loss, such as window diameter, strut | ||
47 | diameter, porosity and specific surface area, were | 47 | diameter, porosity and specific surface area, were | ||
48 | determined.\r\nTechnicalRemarks: ***Sponges***\r\n---\r\n**10 ppi | 48 | determined.\r\nTechnicalRemarks: ***Sponges***\r\n---\r\n**10 ppi | ||
49 | copper sponge (total length 200 mm, diameter 14 mm) made by | 49 | copper sponge (total length 200 mm, diameter 14 mm) made by | ||
50 | replication technique**\r\n* total porosity: 91%\r\n* open porosity: | 50 | replication technique**\r\n* total porosity: 91%\r\n* open porosity: | ||
51 | between 85% and 88% \r\n* nominal cell density: approximately 10 pores | 51 | between 85% and 88% \r\n* nominal cell density: approximately 10 pores | ||
52 | per inch\r\n* mean strut diameter: 0.45 mm\r\n* mean window diameter: | 52 | per inch\r\n* mean strut diameter: 0.45 mm\r\n* mean window diameter: | ||
53 | 1.6 mm\r\n\r\n**10 ppi plastic sponge (total length 47 mm, diameter 14 | 53 | 1.6 mm\r\n\r\n**10 ppi plastic sponge (total length 47 mm, diameter 14 | ||
54 | mm) made by 3D printing**\r\n\r\n* total and open porosity: 86%\r\n* | 54 | mm) made by 3D printing**\r\n\r\n* total and open porosity: 86%\r\n* | ||
55 | nominal cell density: approximately 10 pores per inch\r\n* mean strut | 55 | nominal cell density: approximately 10 pores per inch\r\n* mean strut | ||
56 | diameter: 0.6 mm\r\n* mean window diameter: 2.0 mm\r\n\r\n**20 ppi | 56 | diameter: 0.6 mm\r\n* mean window diameter: 2.0 mm\r\n\r\n**20 ppi | ||
57 | copper sponge (total length 247 mm, diameter 14 mm) made by | 57 | copper sponge (total length 247 mm, diameter 14 mm) made by | ||
58 | replication technique**\r\n\r\n* total porosity: 90%\r\n* open | 58 | replication technique**\r\n\r\n* total porosity: 90%\r\n* open | ||
59 | porosity: between 84% and 87%\r\n* nominal cell size: approximately 20 | 59 | porosity: between 84% and 87%\r\n* nominal cell size: approximately 20 | ||
60 | pores per inch\r\n* mean strut diameter: 0.28 mm\r\n* mean window | 60 | pores per inch\r\n* mean strut diameter: 0.28 mm\r\n* mean window | ||
61 | diameter: 1.0 mm\r\n\r\n***Operating | 61 | diameter: 1.0 mm\r\n\r\n***Operating | ||
62 | conditions***\r\n---\r\n**two-phase flow:**\r\n* pressure: 12 bar and | 62 | conditions***\r\n---\r\n**two-phase flow:**\r\n* pressure: 12 bar and | ||
63 | 26.5 bar\r\n* mass flux: 25 kg m-2 s-1 to 150 kg m-2 s-1\r\n* vapor | 63 | 26.5 bar\r\n* mass flux: 25 kg m-2 s-1 to 150 kg m-2 s-1\r\n* vapor | ||
64 | quality: 10% to 100%\r\n * adiabatic: heat flux: less than 0.9 kW | 64 | quality: 10% to 100%\r\n * adiabatic: heat flux: less than 0.9 kW | ||
65 | m-2\r\n * diabatic: heat flux: 8 kW m-2 to 40 kW | 65 | m-2\r\n * diabatic: heat flux: 8 kW m-2 to 40 kW | ||
66 | m-2\r\n\r\n**single-phase flow:**\r\n* temperature: -10 \u00b0C to -15 | 66 | m-2\r\n\r\n**single-phase flow:**\r\n* temperature: -10 \u00b0C to -15 | ||
67 | \u00b0C\r\n* mass flux: 25 kg m-2 s-1 to 150 kg m-2 s-1\r\n* heat | 67 | \u00b0C\r\n* mass flux: 25 kg m-2 s-1 to 150 kg m-2 s-1\r\n* heat | ||
68 | flux: less than 0.9 kW m-2", | 68 | flux: less than 0.9 kW m-2", | ||
69 | "num_resources": 0, | 69 | "num_resources": 0, | ||
70 | "num_tags": 4, | 70 | "num_tags": 4, | ||
71 | "orcid": "", | 71 | "orcid": "", | ||
72 | "organization": { | 72 | "organization": { | ||
73 | "approval_status": "approved", | 73 | "approval_status": "approved", | ||
74 | "created": "2023-01-12T13:30:23.238233", | 74 | "created": "2023-01-12T13:30:23.238233", | ||
75 | "description": "RADAR (Research Data Repository) is a | 75 | "description": "RADAR (Research Data Repository) is a | ||
76 | cross-disciplinary repository for archiving and publishing research | 76 | cross-disciplinary repository for archiving and publishing research | ||
77 | data from completed scientific studies and projects. The focus is on | 77 | data from completed scientific studies and projects. The focus is on | ||
78 | research data from subjects that do not yet have their own | 78 | research data from subjects that do not yet have their own | ||
79 | discipline-specific infrastructures for research data management. ", | 79 | discipline-specific infrastructures for research data management. ", | ||
80 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 80 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
81 | "image_url": "radar-logo.svg", | 81 | "image_url": "radar-logo.svg", | ||
82 | "is_organization": true, | 82 | "is_organization": true, | ||
83 | "name": "radar", | 83 | "name": "radar", | ||
84 | "state": "active", | 84 | "state": "active", | ||
85 | "title": "RADAR", | 85 | "title": "RADAR", | ||
86 | "type": "organization" | 86 | "type": "organization" | ||
87 | }, | 87 | }, | ||
88 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 88 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
89 | "private": false, | 89 | "private": false, | ||
90 | "production_year": "2018", | 90 | "production_year": "2018", | ||
91 | "publication_year": "2023", | 91 | "publication_year": "2023", | ||
92 | "publishers": [ | 92 | "publishers": [ | ||
93 | { | 93 | { | ||
94 | "publisher": "Karlsruhe Institute of Technology" | 94 | "publisher": "Karlsruhe Institute of Technology" | ||
95 | } | 95 | } | ||
96 | ], | 96 | ], | ||
97 | "relationships_as_object": [], | 97 | "relationships_as_object": [], | ||
98 | "relationships_as_subject": [], | 98 | "relationships_as_subject": [], | ||
99 | "repository_name": "RADAR (Research Data Repository)", | 99 | "repository_name": "RADAR (Research Data Repository)", | ||
100 | "resources": [], | 100 | "resources": [], | ||
101 | "services_used_list": "", | 101 | "services_used_list": "", | ||
102 | "source_metadata_created": "2023", | 102 | "source_metadata_created": "2023", | ||
103 | "source_metadata_modified": "", | 103 | "source_metadata_modified": "", | ||
104 | "state": "active", | 104 | "state": "active", | ||
105 | "subject_areas": [ | 105 | "subject_areas": [ | ||
106 | { | 106 | { | ||
107 | "subject_area_additional": "", | 107 | "subject_area_additional": "", | ||
108 | "subject_area_name": "Engineering" | 108 | "subject_area_name": "Engineering" | ||
109 | } | 109 | } | ||
110 | ], | 110 | ], | ||
111 | "tags": [ | 111 | "tags": [ | ||
112 | { | 112 | { | ||
113 | "display_name": "metal sponges", | 113 | "display_name": "metal sponges", | ||
114 | "id": "683892ce-2469-441d-854c-17657bef263d", | 114 | "id": "683892ce-2469-441d-854c-17657bef263d", | ||
115 | "name": "metal sponges", | 115 | "name": "metal sponges", | ||
116 | "state": "active", | 116 | "state": "active", | ||
117 | "vocabulary_id": null | 117 | "vocabulary_id": null | ||
118 | }, | 118 | }, | ||
119 | { | 119 | { | ||
120 | "display_name": "open-cell foam", | 120 | "display_name": "open-cell foam", | ||
121 | "id": "5fbe5a5e-dc29-4d6a-b947-87cedf150c6a", | 121 | "id": "5fbe5a5e-dc29-4d6a-b947-87cedf150c6a", | ||
122 | "name": "open-cell foam", | 122 | "name": "open-cell foam", | ||
123 | "state": "active", | 123 | "state": "active", | ||
124 | "vocabulary_id": null | 124 | "vocabulary_id": null | ||
125 | }, | 125 | }, | ||
126 | { | 126 | { | ||
127 | "display_name": "pressure drop", | 127 | "display_name": "pressure drop", | ||
128 | "id": "4208f3b6-7b87-4e36-9a8a-43501380b60e", | 128 | "id": "4208f3b6-7b87-4e36-9a8a-43501380b60e", | ||
129 | "name": "pressure drop", | 129 | "name": "pressure drop", | ||
130 | "state": "active", | 130 | "state": "active", | ||
131 | "vocabulary_id": null | 131 | "vocabulary_id": null | ||
132 | }, | 132 | }, | ||
133 | { | 133 | { | ||
134 | "display_name": "two-phase flow", | 134 | "display_name": "two-phase flow", | ||
135 | "id": "54ace7f1-ed00-4912-ad4d-8e7d0fdc7c2f", | 135 | "id": "54ace7f1-ed00-4912-ad4d-8e7d0fdc7c2f", | ||
136 | "name": "two-phase flow", | 136 | "name": "two-phase flow", | ||
137 | "state": "active", | 137 | "state": "active", | ||
138 | "vocabulary_id": null | 138 | "vocabulary_id": null | ||
139 | } | 139 | } | ||
140 | ], | 140 | ], | ||
141 | "title": "Pressure drop data of two-phase flow in a horizontal tube | 141 | "title": "Pressure drop data of two-phase flow in a horizontal tube | ||
142 | filled with metal sponge", | 142 | filled with metal sponge", | ||
143 | "type": "vdataset", | 143 | "type": "vdataset", | ||
144 | "url": "https://doi.org/10.35097/1126" | 144 | "url": "https://doi.org/10.35097/1126" | ||
145 | } | 145 | } |