Changes
On July 23, 2021 at 7:30:09 AM UTC, admin:
-
Added resource Training Dataset to SemEval-2021 Task 11 Shared Task Dataset
f | 1 | { | f | 1 | { |
2 | "author": "Jennifer D'Souza and S\u00f6ren Auer and Ted Pedersen", | 2 | "author": "Jennifer D'Souza and S\u00f6ren Auer and Ted Pedersen", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "extras": [], | 5 | "extras": [], | ||
6 | "groups": [], | 6 | "groups": [], | ||
7 | "id": "2b92e3fd-1ab8-45bb-995c-6102b5bd2f5f", | 7 | "id": "2b92e3fd-1ab8-45bb-995c-6102b5bd2f5f", | ||
8 | "isopen": true, | 8 | "isopen": true, | ||
9 | "license_id": "cc-by-sa", | 9 | "license_id": "cc-by-sa", | ||
10 | "license_title": "Creative Commons Attribution Share-Alike", | 10 | "license_title": "Creative Commons Attribution Share-Alike", | ||
11 | "license_url": "http://www.opendefinition.org/licenses/cc-by-sa", | 11 | "license_url": "http://www.opendefinition.org/licenses/cc-by-sa", | ||
12 | "maintainer": "Jennifer D'Souza", | 12 | "maintainer": "Jennifer D'Souza", | ||
13 | "maintainer_email": "jennifer.dsouza@tib.eu", | 13 | "maintainer_email": "jennifer.dsouza@tib.eu", | ||
14 | "metadata_created": "2021-07-23T07:28:39.166946", | 14 | "metadata_created": "2021-07-23T07:28:39.166946", | ||
n | 15 | "metadata_modified": "2021-07-23T07:28:39.166958", | n | 15 | "metadata_modified": "2021-07-23T07:30:09.835196", |
16 | "name": "semeval-2021-task-11-shared-task-dataset", | 16 | "name": "semeval-2021-task-11-shared-task-dataset", | ||
17 | "notes": "NLPContributionGraph - Structuring Scholarly NLP | 17 | "notes": "NLPContributionGraph - Structuring Scholarly NLP | ||
18 | Contributions in the Open Research Knowledge | 18 | Contributions in the Open Research Knowledge | ||
19 | Graph\r\n\r\nBackground\r\n\r\nNLPContributionGraph was introduced as | 19 | Graph\r\n\r\nBackground\r\n\r\nNLPContributionGraph was introduced as | ||
20 | Task 11 at SemEval 2021 for the first time. The task is defined on a | 20 | Task 11 at SemEval 2021 for the first time. The task is defined on a | ||
21 | dataset of Natural Language Processing (NLP) scholarly articles with | 21 | dataset of Natural Language Processing (NLP) scholarly articles with | ||
22 | their contributions structured to be integrable within Knowledge Graph | 22 | their contributions structured to be integrable within Knowledge Graph | ||
23 | infrastructures such as the Open Research Knowledge Graph. The | 23 | infrastructures such as the Open Research Knowledge Graph. The | ||
24 | structured contribution annotations are provided as (1) Contribution | 24 | structured contribution annotations are provided as (1) Contribution | ||
25 | sentences : a set of sentences about the contribution in the article; | 25 | sentences : a set of sentences about the contribution in the article; | ||
26 | (2) Scientific terms and relations: a set of scientific terms and | 26 | (2) Scientific terms and relations: a set of scientific terms and | ||
27 | relational cue phrases extracted from the contribution sentences; and | 27 | relational cue phrases extracted from the contribution sentences; and | ||
28 | (3) Triples: semantic statements that pair scientific terms with a | 28 | (3) Triples: semantic statements that pair scientific terms with a | ||
29 | relation, modeled toward subject-predicate-object RDF statements for | 29 | relation, modeled toward subject-predicate-object RDF statements for | ||
30 | KG building. The Triples are organized under three (mandatory) or more | 30 | KG building. The Triples are organized under three (mandatory) or more | ||
31 | of twelve total information units (viz., ResearchProblem, Approach, | 31 | of twelve total information units (viz., ResearchProblem, Approach, | ||
32 | Model, Code, Dataset, ExperimentalSetup, Hyperparameters, Baselines, | 32 | Model, Code, Dataset, ExperimentalSetup, Hyperparameters, Baselines, | ||
33 | Results, Tasks, Experiments, and AblationAnalysis).\r\n\r\nThe Shared | 33 | Results, Tasks, Experiments, and AblationAnalysis).\r\n\r\nThe Shared | ||
34 | Task\r\n\r\nAs a complete submission for the Shared Task, given NLP | 34 | Task\r\n\r\nAs a complete submission for the Shared Task, given NLP | ||
35 | scholarly articles in plaintext format, systems had to automatically | 35 | scholarly articles in plaintext format, systems had to automatically | ||
36 | extract the following information: contribution sentences; scientific | 36 | extract the following information: contribution sentences; scientific | ||
37 | term and predicate phrases from the sentences; and * | 37 | term and predicate phrases from the sentences; and * | ||
38 | (subject,predicate,object) triple statements toward KG building | 38 | (subject,predicate,object) triple statements toward KG building | ||
39 | organized under three or more of twelve total information units.\r\n", | 39 | organized under three or more of twelve total information units.\r\n", | ||
n | 40 | "num_resources": 0, | n | 40 | "num_resources": 1, |
41 | "num_tags": 7, | 41 | "num_tags": 7, | ||
42 | "organization": { | 42 | "organization": { | ||
43 | "approval_status": "approved", | 43 | "approval_status": "approved", | ||
44 | "created": "2017-11-23T17:30:37.757128", | 44 | "created": "2017-11-23T17:30:37.757128", | ||
45 | "description": "The German National Library of Science and | 45 | "description": "The German National Library of Science and | ||
46 | Technology, abbreviated TIB, is the national library of the Federal | 46 | Technology, abbreviated TIB, is the national library of the Federal | ||
47 | Republic of Germany for all fields of engineering, technology, and the | 47 | Republic of Germany for all fields of engineering, technology, and the | ||
48 | natural sciences.", | 48 | natural sciences.", | ||
49 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 49 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
50 | "image_url": | 50 | "image_url": | ||
51 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | 51 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | ||
52 | "is_organization": true, | 52 | "is_organization": true, | ||
53 | "name": "tib-iasis", | 53 | "name": "tib-iasis", | ||
54 | "state": "active", | 54 | "state": "active", | ||
55 | "title": "TIB", | 55 | "title": "TIB", | ||
56 | "type": "organization" | 56 | "type": "organization" | ||
57 | }, | 57 | }, | ||
58 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 58 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
59 | "private": false, | 59 | "private": false, | ||
60 | "relationships_as_object": [], | 60 | "relationships_as_object": [], | ||
61 | "relationships_as_subject": [], | 61 | "relationships_as_subject": [], | ||
t | 62 | "resources": [], | t | 62 | "resources": [ |
63 | { | ||||
64 | "cache_last_updated": null, | ||||
65 | "cache_url": null, | ||||
66 | "created": "2021-07-23T07:30:09.849592", | ||||
67 | "datastore_active": false, | ||||
68 | "description": "\r\nTraining Data for the NLPContributionGraph | ||||
69 | Shared Task 11 at SemEval-2021\r\n\r\nThe repository is organized as | ||||
70 | follows:\r\n\r\nREADME.md | ||||
71 | \r\n[task-name-folder]/ # | ||||
72 | natural_language_inference, paraphrase_generation, question_answering, | ||||
73 | relation_extraction, topic_models\r\n \u251c\u2500\u2500 | ||||
74 | [article-counter-folder]/ # ranges between 0 to 100 | ||||
75 | since we annotated varying numbers of articles per task\r\n \u2502 | ||||
76 | \u251c\u2500\u2500 [articlename].pdf # scholarly | ||||
77 | article pdf\r\n \u2502 \u251c\u2500\u2500 | ||||
78 | [articlename]-Grobid-out.txt # plaintext output from the | ||||
79 | [Grobid parser](https://github.com/kermitt2/grobid)\r\n \u2502 | ||||
80 | \u251c\u2500\u2500 [articlename]-Stanza-out.txt # plaintext | ||||
81 | preprocessed output from | ||||
82 | [Stanza](https://github.com/stanfordnlp/stanza)\r\n \u2502 | ||||
83 | \u251c\u2500\u2500 sentences.txt # annotated | ||||
84 | Contribution sentences in the file\r\n \u2502 \u251c\u2500\u2500 | ||||
85 | entities.txt # annotated entities in the | ||||
86 | Contribution sentences\r\n \u2502 \u2514\u2500\u2500 info-units/ | ||||
87 | # the folder containing information units in JSON format\r\n \u2502 | ||||
88 | \u2502 \u2514\u2500\u2500 research-problem.json # | ||||
89 | `research problem` mandatory information unit in json format\r\n | ||||
90 | \u2502 \u2502 \u2514\u2500\u2500 model.json | ||||
91 | # `model` information unit in json format; in some articles it is | ||||
92 | called `approach`\r\n \u2502 \u2502 \u2514\u2500\u2500 ... | ||||
93 | # there are 12 information units in all and each article may be | ||||
94 | annotated by 3 or 6\r\n \u2502 \u2514\u2500\u2500 triples/ | ||||
95 | # the folder containing information unit triples one per line\r\n | ||||
96 | \u2502 \u2502 \u2514\u2500\u2500 research-problem.txt | ||||
97 | # `research problem` triples (one research problem statement per | ||||
98 | line)\r\n \u2502 \u2502 \u2514\u2500\u2500 model.txt | ||||
99 | # `model` triples (one statement per line)\r\n \u2502 \u2502 | ||||
100 | \u2514\u2500\u2500 ... # there are 12 | ||||
101 | information units in all and each article may be annotated by 3 or | ||||
102 | 6\r\n \u2502 \u2514\u2500\u2500 ... | ||||
103 | # there are between 1 to 100 articles annotated for each task, so this | ||||
104 | repeats for the remaining annotated articles\r\n \u2514\u2500\u2500 | ||||
105 | ... # there are 24 tasks | ||||
106 | selected overall, so this repeats 23 more times\r\n\r\n", | ||||
107 | "format": "json, pdf, txt", | ||||
108 | "hash": "", | ||||
109 | "id": "c4c7da41-4bc7-4512-9cba-611c570cf97f", | ||||
110 | "last_modified": null, | ||||
111 | "metadata_modified": "2021-07-23T07:30:09.838000", | ||||
112 | "mimetype": null, | ||||
113 | "mimetype_inner": null, | ||||
114 | "name": "Training Dataset", | ||||
115 | "package_id": "2b92e3fd-1ab8-45bb-995c-6102b5bd2f5f", | ||||
116 | "position": 0, | ||||
117 | "resource_type": null, | ||||
118 | "size": null, | ||||
119 | "state": "active", | ||||
120 | "url": "https://github.com/ncg-task/training-data", | ||||
121 | "url_type": null | ||||
122 | } | ||||
123 | ], | ||||
63 | "state": "draft", | 124 | "state": "draft", | ||
64 | "tags": [ | 125 | "tags": [ | ||
65 | { | 126 | { | ||
66 | "display_name": "dataset", | 127 | "display_name": "dataset", | ||
67 | "id": "ce5ad030-ca3d-47e6-abd1-5c92a2806f1b", | 128 | "id": "ce5ad030-ca3d-47e6-abd1-5c92a2806f1b", | ||
68 | "name": "dataset", | 129 | "name": "dataset", | ||
69 | "state": "active", | 130 | "state": "active", | ||
70 | "vocabulary_id": null | 131 | "vocabulary_id": null | ||
71 | }, | 132 | }, | ||
72 | { | 133 | { | ||
73 | "display_name": "language resource", | 134 | "display_name": "language resource", | ||
74 | "id": "95e3d7f3-d046-428b-98c7-93653d23a183", | 135 | "id": "95e3d7f3-d046-428b-98c7-93653d23a183", | ||
75 | "name": "language resource", | 136 | "name": "language resource", | ||
76 | "state": "active", | 137 | "state": "active", | ||
77 | "vocabulary_id": null | 138 | "vocabulary_id": null | ||
78 | }, | 139 | }, | ||
79 | { | 140 | { | ||
80 | "display_name": "natural language processing", | 141 | "display_name": "natural language processing", | ||
81 | "id": "8af9c93a-1d87-41e0-83d9-f5d01a2bbd0c", | 142 | "id": "8af9c93a-1d87-41e0-83d9-f5d01a2bbd0c", | ||
82 | "name": "natural language processing", | 143 | "name": "natural language processing", | ||
83 | "state": "active", | 144 | "state": "active", | ||
84 | "vocabulary_id": null | 145 | "vocabulary_id": null | ||
85 | }, | 146 | }, | ||
86 | { | 147 | { | ||
87 | "display_name": "open research knowledge graph", | 148 | "display_name": "open research knowledge graph", | ||
88 | "id": "c9fb26fb-f92f-4740-899e-290c1a384971", | 149 | "id": "c9fb26fb-f92f-4740-899e-290c1a384971", | ||
89 | "name": "open research knowledge graph", | 150 | "name": "open research knowledge graph", | ||
90 | "state": "active", | 151 | "state": "active", | ||
91 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
92 | }, | 153 | }, | ||
93 | { | 154 | { | ||
94 | "display_name": "scholarly knowledge graphs", | 155 | "display_name": "scholarly knowledge graphs", | ||
95 | "id": "759ea23d-8996-4917-b4b5-d020b86f7d1a", | 156 | "id": "759ea23d-8996-4917-b4b5-d020b86f7d1a", | ||
96 | "name": "scholarly knowledge graphs", | 157 | "name": "scholarly knowledge graphs", | ||
97 | "state": "active", | 158 | "state": "active", | ||
98 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
99 | }, | 160 | }, | ||
100 | { | 161 | { | ||
101 | "display_name": "semeval", | 162 | "display_name": "semeval", | ||
102 | "id": "44b579c2-0954-4335-8e31-92288b06eb7e", | 163 | "id": "44b579c2-0954-4335-8e31-92288b06eb7e", | ||
103 | "name": "semeval", | 164 | "name": "semeval", | ||
104 | "state": "active", | 165 | "state": "active", | ||
105 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
106 | }, | 167 | }, | ||
107 | { | 168 | { | ||
108 | "display_name": "shared task", | 169 | "display_name": "shared task", | ||
109 | "id": "ffd2394b-4c6d-4c18-9d24-66e7e851bd2f", | 170 | "id": "ffd2394b-4c6d-4c18-9d24-66e7e851bd2f", | ||
110 | "name": "shared task", | 171 | "name": "shared task", | ||
111 | "state": "active", | 172 | "state": "active", | ||
112 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
113 | } | 174 | } | ||
114 | ], | 175 | ], | ||
115 | "title": "SemEval-2021 Task 11 Shared Task Dataset", | 176 | "title": "SemEval-2021 Task 11 Shared Task Dataset", | ||
116 | "type": "dataset", | 177 | "type": "dataset", | ||
117 | "url": "https://github.com/ncg-task/", | 178 | "url": "https://github.com/ncg-task/", | ||
118 | "version": "1.0" | 179 | "version": "1.0" | ||
119 | } | 180 | } |