Changes
On October 1, 2024 at 3:32:01 PM UTC, admin:
-
No fields were updated. See the metadata diff for more details.
t | 1 | { | t | 1 | { |
2 | "access_rights": "Public", | 2 | "access_rights": "Public", | ||
3 | "accrualPeriodicity": "", | 3 | "accrualPeriodicity": "", | ||
4 | "author": "Disha Purohit", | 4 | "author": "Disha Purohit", | ||
5 | "author_email": "disha.purohit@tib.eu", | 5 | "author_email": "disha.purohit@tib.eu", | ||
6 | "citation": [], | 6 | "citation": [], | ||
7 | "conformsTo": "", | 7 | "conformsTo": "", | ||
8 | "creator_user_id": "f7cd6563-f944-40d2-b88a-ec1b2ccfc7d1", | 8 | "creator_user_id": "f7cd6563-f944-40d2-b88a-ec1b2ccfc7d1", | ||
9 | "defined_in": "", | 9 | "defined_in": "", | ||
10 | "doi": "10.57702/38jfs1vi", | 10 | "doi": "10.57702/38jfs1vi", | ||
11 | "doi_date_published": "2024-09-19", | 11 | "doi_date_published": "2024-09-19", | ||
12 | "doi_publisher": "TIB", | 12 | "doi_publisher": "TIB", | ||
13 | "doi_status": true, | 13 | "doi_status": true, | ||
14 | "domain": "https://service.tib.eu/ldmservice", | 14 | "domain": "https://service.tib.eu/ldmservice", | ||
15 | "end_date": "", | 15 | "end_date": "", | ||
16 | "extra_authors": [ | 16 | "extra_authors": [ | ||
17 | { | 17 | { | ||
18 | "extra_author": "Yashrajsinh Chudasama", | 18 | "extra_author": "Yashrajsinh Chudasama", | ||
19 | "orcid": "https://orcid.org/0000-0003-3422-366X" | 19 | "orcid": "https://orcid.org/0000-0003-3422-366X" | ||
20 | }, | 20 | }, | ||
21 | { | 21 | { | ||
22 | "extra_author": "Maria Torrente", | 22 | "extra_author": "Maria Torrente", | ||
23 | "orcid": "" | 23 | "orcid": "" | ||
24 | }, | 24 | }, | ||
25 | { | 25 | { | ||
26 | "extra_author": "Maria-Esther Vidal", | 26 | "extra_author": "Maria-Esther Vidal", | ||
27 | "orcid": "https://orcid.org/0000-0003-1160-8727" | 27 | "orcid": "https://orcid.org/0000-0003-1160-8727" | ||
28 | } | 28 | } | ||
29 | ], | 29 | ], | ||
30 | "extras": [ | 30 | "extras": [ | ||
31 | { | 31 | { | ||
32 | "__extras": { | 32 | "__extras": { | ||
33 | "id": "28a8a7b6-fd8e-41e8-99ee-0bb934b922af", | 33 | "id": "28a8a7b6-fd8e-41e8-99ee-0bb934b922af", | ||
34 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | 34 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | ||
35 | "state": "active" | 35 | "state": "active" | ||
36 | }, | 36 | }, | ||
37 | "key": "", | 37 | "key": "", | ||
38 | "value": "" | 38 | "value": "" | ||
39 | } | 39 | } | ||
40 | ], | 40 | ], | ||
41 | "groups": [], | 41 | "groups": [], | ||
42 | "id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | 42 | "id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | ||
43 | "isopen": true, | 43 | "isopen": true, | ||
44 | "landing_page": "", | 44 | "landing_page": "", | ||
45 | "language": "English", | 45 | "language": "English", | ||
46 | "license_id": "cc-by", | 46 | "license_id": "cc-by", | ||
47 | "license_title": "Creative Commons Attribution", | 47 | "license_title": "Creative Commons Attribution", | ||
48 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 48 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "maintainer": "Disha Purohit", | 50 | "maintainer": "Disha Purohit", | ||
51 | "maintainer_email": "disha.purohit@tib.eu", | 51 | "maintainer_email": "disha.purohit@tib.eu", | ||
52 | "metadata_created": "2024-09-19T13:44:11.745534", | 52 | "metadata_created": "2024-09-19T13:44:11.745534", | ||
53 | "metadata_modified": "2024-10-01T15:32:00.293121", | 53 | "metadata_modified": "2024-10-01T15:32:00.293121", | ||
54 | "name": | 54 | "name": | ||
55 | -and-invalidated-symbolic-explanations-for-knowledge-graph-integrity", | 55 | -and-invalidated-symbolic-explanations-for-knowledge-graph-integrity", | ||
56 | "notes": "VISE represents a novel hybrid strategy that integrates | 56 | "notes": "VISE represents a novel hybrid strategy that integrates | ||
57 | symbolic learning, constraint validation, and numerical learning | 57 | symbolic learning, constraint validation, and numerical learning | ||
58 | approaches. VISE employs KGE to capture implicit information and | 58 | approaches. VISE employs KGE to capture implicit information and | ||
59 | represent negation in KGs, thereby enhancing the prediction | 59 | represent negation in KGs, thereby enhancing the prediction | ||
60 | performance of numerical models. The experimental results demonstrate | 60 | performance of numerical models. The experimental results demonstrate | ||
61 | the efficacy of this hybrid technique, which effectively integrates | 61 | the efficacy of this hybrid technique, which effectively integrates | ||
62 | the strengths of symbolic, numerical, and constraint validation | 62 | the strengths of symbolic, numerical, and constraint validation | ||
63 | paradigms.\r\n\r\nThis collection includes all the data necessary to | 63 | paradigms.\r\n\r\nThis collection includes all the data necessary to | ||
64 | reproduce the results from the experimental evaluation of VISE at | 64 | reproduce the results from the experimental evaluation of VISE at | ||
65 | EXPLIMED @ ECAI'24.\r\nThe data is an anonymized synthetic lung cancer | 65 | EXPLIMED @ ECAI'24.\r\nThe data is an anonymized synthetic lung cancer | ||
66 | benchmark that comprises clinical data extracted from heterogeneous | 66 | benchmark that comprises clinical data extracted from heterogeneous | ||
67 | sources such as publications, clinical trials, and clinical records | 67 | sources such as publications, clinical trials, and clinical records | ||
68 | representing patients diagnosed with lung cancer. We evaluate the VISE | 68 | representing patients diagnosed with lung cancer. We evaluate the VISE | ||
69 | approach on three anonymized Lung Cancer KGs: | 69 | approach on three anonymized Lung Cancer KGs: | ||
70 | LC-\ud835\udc3e\ud835\udc3a1, LC-\ud835\udc3e\ud835\udc3a2,and | 70 | LC-\ud835\udc3e\ud835\udc3a1, LC-\ud835\udc3e\ud835\udc3a2,and | ||
71 | LC-\ud835\udc3e\ud835\udc3a3\r\n\r\nThe collection comprises nine data | 71 | LC-\ud835\udc3e\ud835\udc3a3\r\n\r\nThe collection comprises nine data | ||
72 | sets of three different sizes:\r\n\r\n- LC Knowledge Graph 1 (LC-KG1) | 72 | sets of three different sizes:\r\n\r\n- LC Knowledge Graph 1 (LC-KG1) | ||
73 | models 29 lung cancer patients\r\n- LC Knowledge Graph 2 (LC-KG2) | 73 | models 29 lung cancer patients\r\n- LC Knowledge Graph 2 (LC-KG2) | ||
74 | models 203 lung cancer patients\r\n- LC Knowledge Graph 3 (LC-KG3) | 74 | models 203 lung cancer patients\r\n- LC Knowledge Graph 3 (LC-KG3) | ||
75 | models 319 lung cancer patients\r\n\r\nThree distinct KGs of different | 75 | models 319 lung cancer patients\r\n\r\nThree distinct KGs of different | ||
76 | sizes are available, each with its own characteristics. \r\n\r\n- | 76 | sizes are available, each with its own characteristics. \r\n\r\n- | ||
77 | \"Original KG\": The original KG comprises of anonymized lung cancer | 77 | \"Original KG\": The original KG comprises of anonymized lung cancer | ||
78 | patients with different medical characteristics. \r\n- \"Enriched | 78 | patients with different medical characteristics. \r\n- \"Enriched | ||
79 | KG\": Utilizes an inductive learning technique of KG completion | 79 | KG\": Utilizes an inductive learning technique of KG completion | ||
80 | through self-supervised symbolic learning over the original KG. \r\n- | 80 | through self-supervised symbolic learning over the original KG. \r\n- | ||
81 | \"Transformed KG\": Denotes a transformation of the KG depending on | 81 | \"Transformed KG\": Denotes a transformation of the KG depending on | ||
82 | SHACL shapes evaluated across the enriched KGs. This procedure is used | 82 | SHACL shapes evaluated across the enriched KGs. This procedure is used | ||
83 | to determine the validity of the data. \r\n\r\nVISE is also evaluated | 83 | to determine the validity of the data. \r\n\r\nVISE is also evaluated | ||
84 | with KGs comprising 1242 lung cancer patients (LungCancer-OriginalKG, | 84 | with KGs comprising 1242 lung cancer patients (LungCancer-OriginalKG, | ||
85 | LungCancer-EnrichedKG, and LungCancer-TransformedKG).\r\n", | 85 | LungCancer-EnrichedKG, and LungCancer-TransformedKG).\r\n", | ||
86 | "num_resources": 3, | 86 | "num_resources": 3, | ||
87 | "num_tags": 2, | 87 | "num_tags": 2, | ||
88 | "orcid": "https://orcid.org/0000-0002-1442-335X", | 88 | "orcid": "https://orcid.org/0000-0002-1442-335X", | ||
89 | "organization": { | 89 | "organization": { | ||
90 | "approval_status": "approved", | 90 | "approval_status": "approved", | ||
91 | "created": "2017-11-23T17:30:37.757128", | 91 | "created": "2017-11-23T17:30:37.757128", | ||
92 | "description": "The German National Library of Science and | 92 | "description": "The German National Library of Science and | ||
93 | Technology, abbreviated TIB, is the national library of the Federal | 93 | Technology, abbreviated TIB, is the national library of the Federal | ||
94 | Republic of Germany for all fields of engineering, technology, and the | 94 | Republic of Germany for all fields of engineering, technology, and the | ||
95 | natural sciences.", | 95 | natural sciences.", | ||
96 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 96 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
97 | "image_url": | 97 | "image_url": | ||
98 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | 98 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | ||
99 | "is_organization": true, | 99 | "is_organization": true, | ||
100 | "name": "tib", | 100 | "name": "tib", | ||
101 | "state": "active", | 101 | "state": "active", | ||
102 | "title": "TIB", | 102 | "title": "TIB", | ||
103 | "type": "organization" | 103 | "type": "organization" | ||
104 | }, | 104 | }, | ||
105 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 105 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
106 | "page": "", | 106 | "page": "", | ||
107 | "private": false, | 107 | "private": false, | ||
108 | "relationships_as_object": [], | 108 | "relationships_as_object": [], | ||
109 | "relationships_as_subject": [], | 109 | "relationships_as_subject": [], | ||
110 | "resources": [ | 110 | "resources": [ | ||
111 | { | 111 | { | ||
112 | "auto_update_last_update": "", | 112 | "auto_update_last_update": "", | ||
113 | "cache_last_updated": null, | 113 | "cache_last_updated": null, | ||
114 | "cache_url": null, | 114 | "cache_url": null, | ||
115 | "created": "2024-09-19T13:46:00.045790", | 115 | "created": "2024-09-19T13:46:00.045790", | ||
116 | "description": "", | 116 | "description": "", | ||
117 | "format": "nt", | 117 | "format": "nt", | ||
118 | "hash": "", | 118 | "hash": "", | ||
119 | "id": "c66e1c6f-6a62-483c-bfb3-5df734377080", | 119 | "id": "c66e1c6f-6a62-483c-bfb3-5df734377080", | ||
120 | "language": "", | 120 | "language": "", | ||
121 | "last_modified": "2024-09-19T13:46:00.029305", | 121 | "last_modified": "2024-09-19T13:46:00.029305", | ||
122 | "media": "", | 122 | "media": "", | ||
123 | "metadata_modified": "2024-09-19T13:46:00.042767", | 123 | "metadata_modified": "2024-09-19T13:46:00.042767", | ||
124 | "mimetype": null, | 124 | "mimetype": null, | ||
125 | "mimetype_inner": null, | 125 | "mimetype_inner": null, | ||
126 | "name": "LungCancer-EnrichedKG", | 126 | "name": "LungCancer-EnrichedKG", | ||
127 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | 127 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | ||
128 | "position": 0, | 128 | "position": 0, | ||
129 | "resource_type": null, | 129 | "resource_type": null, | ||
130 | "rights": "", | 130 | "rights": "", | ||
131 | "size": 83374, | 131 | "size": 83374, | ||
132 | "state": "active", | 132 | "state": "active", | ||
133 | "url": | 133 | "url": | ||
134 | 6e1c6f-6a62-483c-bfb3-5df734377080/download/lungcancer-enrichedkg.nt", | 134 | 6e1c6f-6a62-483c-bfb3-5df734377080/download/lungcancer-enrichedkg.nt", | ||
135 | "url_type": "upload" | 135 | "url_type": "upload" | ||
136 | }, | 136 | }, | ||
137 | { | 137 | { | ||
138 | "auto_update_last_update": "", | 138 | "auto_update_last_update": "", | ||
139 | "cache_last_updated": null, | 139 | "cache_last_updated": null, | ||
140 | "cache_url": null, | 140 | "cache_url": null, | ||
141 | "created": "2024-09-19T13:46:16.047331", | 141 | "created": "2024-09-19T13:46:16.047331", | ||
142 | "description": "", | 142 | "description": "", | ||
143 | "format": "nt", | 143 | "format": "nt", | ||
144 | "hash": "", | 144 | "hash": "", | ||
145 | "id": "dab92f8a-94e6-4cd4-aa23-b5b2fcf3fe49", | 145 | "id": "dab92f8a-94e6-4cd4-aa23-b5b2fcf3fe49", | ||
146 | "language": "", | 146 | "language": "", | ||
147 | "last_modified": "2024-09-19T13:46:16.028996", | 147 | "last_modified": "2024-09-19T13:46:16.028996", | ||
148 | "media": "", | 148 | "media": "", | ||
149 | "metadata_modified": "2024-09-19T13:46:16.044253", | 149 | "metadata_modified": "2024-09-19T13:46:16.044253", | ||
150 | "mimetype": null, | 150 | "mimetype": null, | ||
151 | "mimetype_inner": null, | 151 | "mimetype_inner": null, | ||
152 | "name": "LungCancer-OriginalKG", | 152 | "name": "LungCancer-OriginalKG", | ||
153 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | 153 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | ||
154 | "position": 1, | 154 | "position": 1, | ||
155 | "resource_type": null, | 155 | "resource_type": null, | ||
156 | "rights": "", | 156 | "rights": "", | ||
157 | "size": 2350495, | 157 | "size": 2350495, | ||
158 | "state": "active", | 158 | "state": "active", | ||
159 | "url": | 159 | "url": | ||
160 | b92f8a-94e6-4cd4-aa23-b5b2fcf3fe49/download/lungcancer-originalkg.nt", | 160 | b92f8a-94e6-4cd4-aa23-b5b2fcf3fe49/download/lungcancer-originalkg.nt", | ||
161 | "url_type": "upload" | 161 | "url_type": "upload" | ||
162 | }, | 162 | }, | ||
163 | { | 163 | { | ||
164 | "auto_update_last_update": "", | 164 | "auto_update_last_update": "", | ||
165 | "cache_last_updated": null, | 165 | "cache_last_updated": null, | ||
166 | "cache_url": null, | 166 | "cache_url": null, | ||
167 | "created": "2024-09-19T13:46:29.670010", | 167 | "created": "2024-09-19T13:46:29.670010", | ||
168 | "description": "", | 168 | "description": "", | ||
169 | "format": "nt", | 169 | "format": "nt", | ||
170 | "hash": "", | 170 | "hash": "", | ||
171 | "id": "7e86fc74-ea50-4fa6-afec-83ddfed31b83", | 171 | "id": "7e86fc74-ea50-4fa6-afec-83ddfed31b83", | ||
172 | "language": "", | 172 | "language": "", | ||
173 | "last_modified": "2024-09-19T13:46:29.650972", | 173 | "last_modified": "2024-09-19T13:46:29.650972", | ||
174 | "media": "", | 174 | "media": "", | ||
175 | "metadata_modified": "2024-09-19T13:46:29.666624", | 175 | "metadata_modified": "2024-09-19T13:46:29.666624", | ||
176 | "mimetype": null, | 176 | "mimetype": null, | ||
177 | "mimetype_inner": null, | 177 | "mimetype_inner": null, | ||
178 | "name": "LungCancer-TransformedKG", | 178 | "name": "LungCancer-TransformedKG", | ||
179 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | 179 | "package_id": "a20fb045-ddac-4463-ae86-10d1df1d5c9e", | ||
180 | "position": 2, | 180 | "position": 2, | ||
181 | "resource_type": null, | 181 | "resource_type": null, | ||
182 | "rights": "", | 182 | "rights": "", | ||
183 | "size": 83634, | 183 | "size": 83634, | ||
184 | "state": "active", | 184 | "state": "active", | ||
185 | "url": | 185 | "url": | ||
186 | c74-ea50-4fa6-afec-83ddfed31b83/download/lungcancer-transformedkg.nt", | 186 | c74-ea50-4fa6-afec-83ddfed31b83/download/lungcancer-transformedkg.nt", | ||
187 | "url_type": "upload" | 187 | "url_type": "upload" | ||
188 | } | 188 | } | ||
189 | ], | 189 | ], | ||
190 | "services_used_list": "", | 190 | "services_used_list": "", | ||
191 | "spatial": "", | 191 | "spatial": "", | ||
192 | "spatial_resolution": "", | 192 | "spatial_resolution": "", | ||
193 | "start_date": "", | 193 | "start_date": "", | ||
194 | "state": "active", | 194 | "state": "active", | ||
195 | "tags": [ | 195 | "tags": [ | ||
196 | { | 196 | { | ||
197 | "display_name": "Knowledge Graph", | 197 | "display_name": "Knowledge Graph", | ||
198 | "id": "1bea6e8a-7d3e-45b6-8ebb-3c23ad1b748b", | 198 | "id": "1bea6e8a-7d3e-45b6-8ebb-3c23ad1b748b", | ||
199 | "name": "Knowledge Graph", | 199 | "name": "Knowledge Graph", | ||
200 | "state": "active", | 200 | "state": "active", | ||
201 | "vocabulary_id": null | 201 | "vocabulary_id": null | ||
202 | }, | 202 | }, | ||
203 | { | 203 | { | ||
204 | "display_name": "Symbolic Learning", | 204 | "display_name": "Symbolic Learning", | ||
205 | "id": "f9fd23ca-ab6c-482c-b057-06ef41faff5d", | 205 | "id": "f9fd23ca-ab6c-482c-b057-06ef41faff5d", | ||
206 | "name": "Symbolic Learning", | 206 | "name": "Symbolic Learning", | ||
207 | "state": "active", | 207 | "state": "active", | ||
208 | "vocabulary_id": null | 208 | "vocabulary_id": null | ||
209 | } | 209 | } | ||
210 | ], | 210 | ], | ||
211 | "temporal_resolution": "", | 211 | "temporal_resolution": "", | ||
212 | "title": "VISE: Validated and Invalidated Symbolic Explanations for | 212 | "title": "VISE: Validated and Invalidated Symbolic Explanations for | ||
213 | Knowledge Graph Integrity", | 213 | Knowledge Graph Integrity", | ||
214 | "type": "dataset", | 214 | "type": "dataset", | ||
215 | "url": "https://github.com/SDM-TIB/VISE?tab=readme-ov-file", | 215 | "url": "https://github.com/SDM-TIB/VISE?tab=readme-ov-file", | ||
216 | "version": "", | 216 | "version": "", | ||
217 | "version_note": "" | 217 | "version_note": "" | ||
218 | } | 218 | } |