Changes
On November 30, 2024 at 10:44:42 AM UTC, admin:
-
Moved Seawater carbonate chemistry and primary and bacterial production in Antarctic coastal waters during austral summer from organization PANGAEA (Biosphere) to organization PANGAEA (Ecology)
-
Removed the following tags from Seawater carbonate chemistry and primary and bacterial production in Antarctic coastal waters during austral summer
-
Added the following tags to Seawater carbonate chemistry and primary and bacterial production in Antarctic coastal waters during austral summer
f | 1 | { | f | 1 | { |
2 | "author": "Westwood, Karen", | 2 | "author": "Westwood, Karen", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "citation": [], | 4 | "citation": [], | ||
5 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 5 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
6 | "doi": "10.1594/PANGAEA.902309", | 6 | "doi": "10.1594/PANGAEA.902309", | ||
7 | "doi_date_published": "2018", | 7 | "doi_date_published": "2018", | ||
8 | "doi_publisher": "", | 8 | "doi_publisher": "", | ||
9 | "doi_status": "True", | 9 | "doi_status": "True", | ||
10 | "extra_authors": [ | 10 | "extra_authors": [ | ||
11 | { | 11 | { | ||
12 | "extra_author": "Thomson, Paul G", | 12 | "extra_author": "Thomson, Paul G", | ||
13 | "familyName": "Thomson", | 13 | "familyName": "Thomson", | ||
14 | "givenName": "Paul G", | 14 | "givenName": "Paul G", | ||
15 | "orcid": "" | 15 | "orcid": "" | ||
16 | }, | 16 | }, | ||
17 | { | 17 | { | ||
18 | "extra_author": "van den Enden, Rick", | 18 | "extra_author": "van den Enden, Rick", | ||
19 | "familyName": "van den Enden", | 19 | "familyName": "van den Enden", | ||
20 | "givenName": "Rick", | 20 | "givenName": "Rick", | ||
21 | "orcid": "" | 21 | "orcid": "" | ||
22 | }, | 22 | }, | ||
23 | { | 23 | { | ||
24 | "extra_author": "Maher, L E", | 24 | "extra_author": "Maher, L E", | ||
25 | "familyName": "Maher", | 25 | "familyName": "Maher", | ||
26 | "givenName": "L E", | 26 | "givenName": "L E", | ||
27 | "orcid": "" | 27 | "orcid": "" | ||
28 | }, | 28 | }, | ||
29 | { | 29 | { | ||
30 | "extra_author": "Wright, S", | 30 | "extra_author": "Wright, S", | ||
31 | "familyName": "Wright", | 31 | "familyName": "Wright", | ||
32 | "givenName": "S", | 32 | "givenName": "S", | ||
33 | "orcid": "" | 33 | "orcid": "" | ||
34 | }, | 34 | }, | ||
35 | { | 35 | { | ||
36 | "extra_author": "Davidson, Andrew T", | 36 | "extra_author": "Davidson, Andrew T", | ||
37 | "familyName": "Davidson", | 37 | "familyName": "Davidson", | ||
38 | "givenName": "Andrew T", | 38 | "givenName": "Andrew T", | ||
39 | "orcid": "" | 39 | "orcid": "" | ||
40 | } | 40 | } | ||
41 | ], | 41 | ], | ||
42 | "familyName": "Westwood", | 42 | "familyName": "Westwood", | ||
43 | "givenName": "Karen", | 43 | "givenName": "Karen", | ||
44 | "groups": [], | 44 | "groups": [], | ||
45 | "id": "73e9852b-e85e-4e37-a425-795471d87df3", | 45 | "id": "73e9852b-e85e-4e37-a425-795471d87df3", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "license_id": "CC-BY-4.0", | 47 | "license_id": "CC-BY-4.0", | ||
48 | "license_title": "CC-BY-4.0", | 48 | "license_title": "CC-BY-4.0", | ||
49 | "metadata_created": "2024-11-29T11:46:13.081971", | 49 | "metadata_created": "2024-11-29T11:46:13.081971", | ||
n | 50 | "metadata_modified": "2024-11-29T11:46:13.081977", | n | 50 | "metadata_modified": "2024-11-30T10:44:42.366444", |
51 | "name": "png-doi-10-1594-pangaea-902309", | 51 | "name": "png-doi-10-1594-pangaea-902309", | ||
52 | "notes": "Polar waters may be highly impacted by ocean acidification | 52 | "notes": "Polar waters may be highly impacted by ocean acidification | ||
53 | (OA) due to increased solubility of CO2 at colder water temperatures. | 53 | (OA) due to increased solubility of CO2 at colder water temperatures. | ||
54 | Three experiments examining the influence of OA on primary and | 54 | Three experiments examining the influence of OA on primary and | ||
55 | bacterial production were conducted during austral summer at Davis | 55 | bacterial production were conducted during austral summer at Davis | ||
56 | Station, East Antarctica (68\u00b035\u2032 S, 77\u00b058\u2032 E). For | 56 | Station, East Antarctica (68\u00b035\u2032 S, 77\u00b058\u2032 E). For | ||
57 | each experiment, six minicosm tanks (650 L) were filled with 200 | 57 | each experiment, six minicosm tanks (650 L) were filled with 200 | ||
58 | \u03bcm filtered coastal seawater containing natural communities of | 58 | \u03bcm filtered coastal seawater containing natural communities of | ||
59 | Antarctic marine microbes. Assemblages were incubated for 10 to 12 | 59 | Antarctic marine microbes. Assemblages were incubated for 10 to 12 | ||
60 | days at CO2 concentrations ranging from pre-industrial to post-2300. | 60 | days at CO2 concentrations ranging from pre-industrial to post-2300. | ||
61 | Primary and bacterial production rates were determined using NaH14CO3 | 61 | Primary and bacterial production rates were determined using NaH14CO3 | ||
62 | and 14C-leucine, respectively. Net community production (NCP) was also | 62 | and 14C-leucine, respectively. Net community production (NCP) was also | ||
63 | determined using dissolved oxygen. In all experiments, maximum | 63 | determined using dissolved oxygen. In all experiments, maximum | ||
64 | photosynthetic rates (Pmax, mg C mg/chl a/h) decreased with elevated | 64 | photosynthetic rates (Pmax, mg C mg/chl a/h) decreased with elevated | ||
65 | CO2, clearly reducing rates of total gross primary production (mg | 65 | CO2, clearly reducing rates of total gross primary production (mg | ||
66 | C/L/h). Rates of cell-specific bacterial productivity (\u03bcg | 66 | C/L/h). Rates of cell-specific bacterial productivity (\u03bcg | ||
67 | C/cell/h) also decreased under elevated CO2, yet total bacterial | 67 | C/cell/h) also decreased under elevated CO2, yet total bacterial | ||
68 | production (\u03bcg C/L/h) and cell abundances increased with CO2 over | 68 | production (\u03bcg C/L/h) and cell abundances increased with CO2 over | ||
69 | Days 0\u20134. Initial increases in bacterial production and abundance | 69 | Days 0\u20134. Initial increases in bacterial production and abundance | ||
70 | were associated with fewer heterotrophic nanoflagellates and therefore | 70 | were associated with fewer heterotrophic nanoflagellates and therefore | ||
71 | less grazing pressure. The main changes in primary and bacterial | 71 | less grazing pressure. The main changes in primary and bacterial | ||
72 | productivity generally occurred at CO2 concentrations > 2 \u00d7 | 72 | productivity generally occurred at CO2 concentrations > 2 \u00d7 | ||
73 | present day (> 780 ppm), with the same responses occurring regardless | 73 | present day (> 780 ppm), with the same responses occurring regardless | ||
74 | of seasonally changing environmental conditions and microbial | 74 | of seasonally changing environmental conditions and microbial | ||
75 | assemblages. However, NCP varied both within and among experiments, | 75 | assemblages. However, NCP varied both within and among experiments, | ||
76 | largely due to changing nitrate + nitrite (NOx) availability. At NOx | 76 | largely due to changing nitrate + nitrite (NOx) availability. At NOx | ||
77 | concentrations < 1.5 \u03bcM photosynthesis to respiration ratios | 77 | concentrations < 1.5 \u03bcM photosynthesis to respiration ratios | ||
78 | showed that populations switched from net autotrophy to heterotrophy | 78 | showed that populations switched from net autotrophy to heterotrophy | ||
79 | and CO2 responses were suppressed. Overall, OA may reduce production | 79 | and CO2 responses were suppressed. Overall, OA may reduce production | ||
80 | in Antarctic coastal waters, thereby reducing food availability to | 80 | in Antarctic coastal waters, thereby reducing food availability to | ||
81 | higher trophic levels and reducing draw-down of atmospheric CO2, thus | 81 | higher trophic levels and reducing draw-down of atmospheric CO2, thus | ||
82 | forming a positive feedback to climate change. NOX limitation may | 82 | forming a positive feedback to climate change. NOX limitation may | ||
83 | suppress this OA response but cause a similar decline.", | 83 | suppress this OA response but cause a similar decline.", | ||
84 | "num_resources": 0, | 84 | "num_resources": 0, | ||
n | 85 | "num_tags": 12, | n | 85 | "num_tags": 16, |
86 | "orcid": "0000-0003-1060-7140", | 86 | "orcid": "0000-0003-1060-7140", | ||
87 | "organization": { | 87 | "organization": { | ||
88 | "approval_status": "approved", | 88 | "approval_status": "approved", | ||
n | 89 | "created": "2024-11-29T11:32:00.143130", | n | 89 | "created": "2024-11-30T10:25:26.439072", |
90 | "description": "PANGAEA (Data Publisher for Earth & Environmental | 90 | "description": "PANGAEA (Data Publisher for Earth & Environmental | ||
91 | Science): The information system PANGAEA is operated as an Open Access | 91 | Science): The information system PANGAEA is operated as an Open Access | ||
92 | library aimed at archiving, publishing and distributing georeferenced | 92 | library aimed at archiving, publishing and distributing georeferenced | ||
93 | data from earth system research. PANGAEA guarantees long-term | 93 | data from earth system research. PANGAEA guarantees long-term | ||
94 | availability (greater than 10 years) of its content. PANGAEA is open | 94 | availability (greater than 10 years) of its content. PANGAEA is open | ||
95 | to any project, institution, or individual scientist to use or to | 95 | to any project, institution, or individual scientist to use or to | ||
96 | archive and publish data. PANGAEA focuses on georeferenced | 96 | archive and publish data. PANGAEA focuses on georeferenced | ||
97 | observational data, experimental data, and models/simulations. | 97 | observational data, experimental data, and models/simulations. | ||
98 | Citability, comprehensive metadata descriptions, interoperability of | 98 | Citability, comprehensive metadata descriptions, interoperability of | ||
99 | data and metadata, a high degree of structural and semantic | 99 | data and metadata, a high degree of structural and semantic | ||
100 | harmonization of the data inventory as well as the commitment of the | 100 | harmonization of the data inventory as well as the commitment of the | ||
101 | hosting institutions ensures FAIRness of archived data.", | 101 | hosting institutions ensures FAIRness of archived data.", | ||
n | 102 | "id": "3226ef9c-20d1-43fd-ba8f-fa35c8c9fb5d", | n | 102 | "id": "c2816fc6-b5ce-42c9-b5a4-11709b658b82", |
103 | "image_url": "pangaea_topicbiosphere.png", | 103 | "image_url": "pangaea_topicecology.png", | ||
104 | "is_organization": true, | 104 | "is_organization": true, | ||
n | 105 | "name": "pangaea_biosphere", | n | 105 | "name": "pangaea_ecology", |
106 | "state": "active", | 106 | "state": "active", | ||
n | 107 | "title": "PANGAEA (Biosphere)", | n | 107 | "title": "PANGAEA (Ecology)", |
108 | "type": "organization" | 108 | "type": "organization" | ||
109 | }, | 109 | }, | ||
n | 110 | "owner_org": "3226ef9c-20d1-43fd-ba8f-fa35c8c9fb5d", | n | 110 | "owner_org": "c2816fc6-b5ce-42c9-b5a4-11709b658b82", |
111 | "private": false, | 111 | "private": false, | ||
112 | "publication_year": "2018", | 112 | "publication_year": "2018", | ||
113 | "related_identifiers": [ | 113 | "related_identifiers": [ | ||
114 | { | 114 | { | ||
115 | "authors": "Westwood Karen,Thomson Paul G,van den Enden | 115 | "authors": "Westwood Karen,Thomson Paul G,van den Enden | ||
116 | Rick,Maher L E,Wright S,Davidson Andrew T", | 116 | Rick,Maher L E,Wright S,Davidson Andrew T", | ||
117 | "email_authors": "Karen.Westwood@aad.gov.au,,,,,", | 117 | "email_authors": "Karen.Westwood@aad.gov.au,,,,,", | ||
118 | "identifier": "https://doi.org/10.1016/j.jembe.2017.11.003", | 118 | "identifier": "https://doi.org/10.1016/j.jembe.2017.11.003", | ||
119 | "identifier_type": "DOI", | 119 | "identifier_type": "DOI", | ||
120 | "orcid_authors": "0000-0003-1060-7140,,,,,", | 120 | "orcid_authors": "0000-0003-1060-7140,,,,,", | ||
121 | "relation_type": "IsSupplementTo", | 121 | "relation_type": "IsSupplementTo", | ||
122 | "source": "Journal of Experimental Marine Biology and Ecology", | 122 | "source": "Journal of Experimental Marine Biology and Ecology", | ||
123 | "title": "Ocean acidification impacts primary and bacterial | 123 | "title": "Ocean acidification impacts primary and bacterial | ||
124 | production in Antarctic coastal waters during austral summer", | 124 | production in Antarctic coastal waters during austral summer", | ||
125 | "year": "2018" | 125 | "year": "2018" | ||
126 | }, | 126 | }, | ||
127 | { | 127 | { | ||
128 | "authors": "Gattuso Jean-Pierre,Epitalon Jean-Marie,Lavigne | 128 | "authors": "Gattuso Jean-Pierre,Epitalon Jean-Marie,Lavigne | ||
129 | H\u00e9lo\u00efse,Orr James C,Gentili Bernard,Hagens Mathilde,Hofmann | 129 | H\u00e9lo\u00efse,Orr James C,Gentili Bernard,Hagens Mathilde,Hofmann | ||
130 | Andreas,Mueller Jens-Daniel,Proye Aur\u00e9lien,Rae James,Soetaert | 130 | Andreas,Mueller Jens-Daniel,Proye Aur\u00e9lien,Rae James,Soetaert | ||
131 | Karline", | 131 | Karline", | ||
132 | "email_authors": | 132 | "email_authors": | ||
133 | orr@iaea.org,bernard.gentili@orange.fr,,,,,,karline.soetaert@nioz.nl", | 133 | orr@iaea.org,bernard.gentili@orange.fr,,,,,,karline.soetaert@nioz.nl", | ||
134 | "identifier": "https://CRAN.R-project.org/package=seacarb", | 134 | "identifier": "https://CRAN.R-project.org/package=seacarb", | ||
135 | "identifier_type": "DOI", | 135 | "identifier_type": "DOI", | ||
136 | "orcid_authors": | 136 | "orcid_authors": | ||
137 | 7080,,0000-0003-3980-1043,,,,0000-0003-3904-2526,0000-0003-4603-7100", | 137 | 7080,,0000-0003-3980-1043,,,,0000-0003-3904-2526,0000-0003-4603-7100", | ||
138 | "relation_type": "References", | 138 | "relation_type": "References", | ||
139 | "source": "", | 139 | "source": "", | ||
140 | "title": "seacarb: seawater carbonate chemistry with R. R | 140 | "title": "seacarb: seawater carbonate chemistry with R. R | ||
141 | package version 3.2.12", | 141 | package version 3.2.12", | ||
142 | "year": "2019" | 142 | "year": "2019" | ||
143 | } | 143 | } | ||
144 | ], | 144 | ], | ||
145 | "relationships_as_object": [], | 145 | "relationships_as_object": [], | ||
146 | "relationships_as_subject": [], | 146 | "relationships_as_subject": [], | ||
147 | "repository_name": "PANGAEA (Data Publisher for Earth & | 147 | "repository_name": "PANGAEA (Data Publisher for Earth & | ||
148 | Environmental Science)", | 148 | Environmental Science)", | ||
149 | "resource_type": "text/tab-separated-values - filename: | 149 | "resource_type": "text/tab-separated-values - filename: | ||
150 | Westwood_etal-2018_JEMBE", | 150 | Westwood_etal-2018_JEMBE", | ||
151 | "resources": [], | 151 | "resources": [], | ||
152 | "source_metadata_created": "2018", | 152 | "source_metadata_created": "2018", | ||
153 | "source_metadata_modified": "", | 153 | "source_metadata_modified": "", | ||
154 | "state": "active", | 154 | "state": "active", | ||
155 | "subject_areas": [ | 155 | "subject_areas": [ | ||
156 | { | 156 | { | ||
157 | "subject_area_additional": "", | 157 | "subject_area_additional": "", | ||
158 | "subject_area_name": "BiologicalClassification" | 158 | "subject_area_name": "BiologicalClassification" | ||
159 | }, | 159 | }, | ||
160 | { | 160 | { | ||
161 | "subject_area_additional": "", | 161 | "subject_area_additional": "", | ||
162 | "subject_area_name": "Biosphere" | 162 | "subject_area_name": "Biosphere" | ||
163 | }, | 163 | }, | ||
164 | { | 164 | { | ||
165 | "subject_area_additional": "", | 165 | "subject_area_additional": "", | ||
166 | "subject_area_name": "Chemistry" | 166 | "subject_area_name": "Chemistry" | ||
167 | }, | 167 | }, | ||
168 | { | 168 | { | ||
169 | "subject_area_additional": "", | 169 | "subject_area_additional": "", | ||
170 | "subject_area_name": "Ecology" | 170 | "subject_area_name": "Ecology" | ||
171 | }, | 171 | }, | ||
172 | { | 172 | { | ||
173 | "subject_area_additional": "", | 173 | "subject_area_additional": "", | ||
174 | "subject_area_name": "Oceans" | 174 | "subject_area_name": "Oceans" | ||
175 | } | 175 | } | ||
176 | ], | 176 | ], | ||
177 | "tags": [ | 177 | "tags": [ | ||
178 | { | 178 | { | ||
n | n | 179 | "display_name": "1000 L or 1 m2", | ||
180 | "id": "d920ecdb-c44e-43f2-bb4c-ffdc3a3c398c", | ||||
181 | "name": "1000 L or 1 m2", | ||||
182 | "state": "active", | ||||
183 | "vocabulary_id": null | ||||
184 | }, | ||||
185 | { | ||||
186 | "display_name": "Abundance", | ||||
187 | "id": "b6432d44-0a46-478c-8d9a-e9f79213a6a2", | ||||
188 | "name": "Abundance", | ||||
189 | "state": "active", | ||||
190 | "vocabulary_id": null | ||||
191 | }, | ||||
192 | { | ||||
179 | "display_name": "Antarctic", | 193 | "display_name": "Antarctic", | ||
180 | "id": "d6da6eb5-bf96-4ccb-b3e9-ca4f19473e23", | 194 | "id": "d6da6eb5-bf96-4ccb-b3e9-ca4f19473e23", | ||
181 | "name": "Antarctic", | 195 | "name": "Antarctic", | ||
182 | "state": "active", | 196 | "state": "active", | ||
183 | "vocabulary_id": null | 197 | "vocabulary_id": null | ||
184 | }, | 198 | }, | ||
185 | { | 199 | { | ||
n | 186 | "display_name": "Biomass-Abundance-Elemental composition", | n | 200 | "display_name": "Biomass", |
187 | "id": "5a237d59-e5be-4850-af81-78df25db3959", | 201 | "id": "1d36ab17-1789-476f-b35f-447f5acdc2ac", | ||
188 | "name": "Biomass-Abundance-Elemental composition", | 202 | "name": "Biomass", | ||
189 | "state": "active", | 203 | "state": "active", | ||
190 | "vocabulary_id": null | 204 | "vocabulary_id": null | ||
191 | }, | 205 | }, | ||
192 | { | 206 | { | ||
193 | "display_name": "Coast and continental shelf", | 207 | "display_name": "Coast and continental shelf", | ||
194 | "id": "58eb1929-34b5-4fd9-ac44-824f0e51de40", | 208 | "id": "58eb1929-34b5-4fd9-ac44-824f0e51de40", | ||
195 | "name": "Coast and continental shelf", | 209 | "name": "Coast and continental shelf", | ||
196 | "state": "active", | 210 | "state": "active", | ||
197 | "vocabulary_id": null | 211 | "vocabulary_id": null | ||
198 | }, | 212 | }, | ||
199 | { | 213 | { | ||
200 | "display_name": "Community composition and diversity", | 214 | "display_name": "Community composition and diversity", | ||
201 | "id": "7579ffcb-0715-49e4-b2d3-fddd764ef3be", | 215 | "id": "7579ffcb-0715-49e4-b2d3-fddd764ef3be", | ||
202 | "name": "Community composition and diversity", | 216 | "name": "Community composition and diversity", | ||
203 | "state": "active", | 217 | "state": "active", | ||
204 | "vocabulary_id": null | 218 | "vocabulary_id": null | ||
205 | }, | 219 | }, | ||
206 | { | 220 | { | ||
n | 207 | "display_name": "Containers and aquaria 20-1000 L or 1 m2", | n | 221 | "display_name": "Containers and aquaria 20", |
208 | "id": "a9d9036d-3fe8-4fb1-bcb9-07b8a3a3fe11", | 222 | "id": "18d57eca-7aec-4d8a-9a57-92bf32a45d53", | ||
209 | "name": "Containers and aquaria 20-1000 L or 1 m2", | 223 | "name": "Containers and aquaria 20", | ||
224 | "state": "active", | ||||
225 | "vocabulary_id": null | ||||
226 | }, | ||||
227 | { | ||||
228 | "display_name": "Elemental composition", | ||||
229 | "id": "7e17866a-7d27-4b2b-92f9-8c3ab3557a5c", | ||||
230 | "name": "Elemental composition", | ||||
210 | "state": "active", | 231 | "state": "active", | ||
211 | "vocabulary_id": null | 232 | "vocabulary_id": null | ||
212 | }, | 233 | }, | ||
213 | { | 234 | { | ||
214 | "display_name": "Entire community", | 235 | "display_name": "Entire community", | ||
215 | "id": "6e1a8708-bc7c-4fa2-af8d-8a3c7bf9112a", | 236 | "id": "6e1a8708-bc7c-4fa2-af8d-8a3c7bf9112a", | ||
216 | "name": "Entire community", | 237 | "name": "Entire community", | ||
217 | "state": "active", | 238 | "state": "active", | ||
218 | "vocabulary_id": null | 239 | "vocabulary_id": null | ||
219 | }, | 240 | }, | ||
220 | { | 241 | { | ||
221 | "display_name": "Laboratory experiment", | 242 | "display_name": "Laboratory experiment", | ||
222 | "id": "c6c00754-c769-4932-a517-bff2c9512884", | 243 | "id": "c6c00754-c769-4932-a517-bff2c9512884", | ||
223 | "name": "Laboratory experiment", | 244 | "name": "Laboratory experiment", | ||
224 | "state": "active", | 245 | "state": "active", | ||
225 | "vocabulary_id": null | 246 | "vocabulary_id": null | ||
226 | }, | 247 | }, | ||
227 | { | 248 | { | ||
228 | "display_name": "Other metabolic rates", | 249 | "display_name": "Other metabolic rates", | ||
229 | "id": "15b40418-50bc-48f5-b107-e13b4081debf", | 250 | "id": "15b40418-50bc-48f5-b107-e13b4081debf", | ||
230 | "name": "Other metabolic rates", | 251 | "name": "Other metabolic rates", | ||
231 | "state": "active", | 252 | "state": "active", | ||
232 | "vocabulary_id": null | 253 | "vocabulary_id": null | ||
233 | }, | 254 | }, | ||
234 | { | 255 | { | ||
235 | "display_name": "Pelagos", | 256 | "display_name": "Pelagos", | ||
236 | "id": "012f5b69-4e75-4f54-8ac4-8bf192cafaa2", | 257 | "id": "012f5b69-4e75-4f54-8ac4-8bf192cafaa2", | ||
237 | "name": "Pelagos", | 258 | "name": "Pelagos", | ||
238 | "state": "active", | 259 | "state": "active", | ||
239 | "vocabulary_id": null | 260 | "vocabulary_id": null | ||
240 | }, | 261 | }, | ||
241 | { | 262 | { | ||
n | n | 263 | "display_name": "Photosynthesis", | ||
264 | "id": "ab256517-eb7b-4eed-ad52-64a0ee98fe87", | ||||
265 | "name": "Photosynthesis", | ||||
266 | "state": "active", | ||||
267 | "vocabulary_id": null | ||||
268 | }, | ||||
269 | { | ||||
242 | "display_name": "Polar", | 270 | "display_name": "Polar", | ||
243 | "id": "42c64bec-e6be-4482-b2fb-61f7a4526407", | 271 | "id": "42c64bec-e6be-4482-b2fb-61f7a4526407", | ||
244 | "name": "Polar", | 272 | "name": "Polar", | ||
245 | "state": "active", | 273 | "state": "active", | ||
246 | "vocabulary_id": null | 274 | "vocabulary_id": null | ||
247 | }, | 275 | }, | ||
248 | { | 276 | { | ||
t | 249 | "display_name": "Primary production-Photosynthesis", | t | 277 | "display_name": "Primary production", |
250 | "id": "446160f8-ac15-4da8-a39f-79b6c421e396", | 278 | "id": "aca6914d-a728-406d-a5b9-dd9593c21e4e", | ||
251 | "name": "Primary production-Photosynthesis", | 279 | "name": "Primary production", | ||
252 | "state": "active", | 280 | "state": "active", | ||
253 | "vocabulary_id": null | 281 | "vocabulary_id": null | ||
254 | }, | 282 | }, | ||
255 | { | 283 | { | ||
256 | "display_name": "Respiration", | 284 | "display_name": "Respiration", | ||
257 | "id": "494c54c9-c9ac-44d3-88fa-8e717d8113e0", | 285 | "id": "494c54c9-c9ac-44d3-88fa-8e717d8113e0", | ||
258 | "name": "Respiration", | 286 | "name": "Respiration", | ||
259 | "state": "active", | 287 | "state": "active", | ||
260 | "vocabulary_id": null | 288 | "vocabulary_id": null | ||
261 | } | 289 | } | ||
262 | ], | 290 | ], | ||
263 | "title": "Seawater carbonate chemistry and primary and bacterial | 291 | "title": "Seawater carbonate chemistry and primary and bacterial | ||
264 | production in Antarctic coastal waters during austral summer", | 292 | production in Antarctic coastal waters during austral summer", | ||
265 | "type": "vdataset", | 293 | "type": "vdataset", | ||
266 | "url": "https://doi.org/10.1594/PANGAEA.902309" | 294 | "url": "https://doi.org/10.1594/PANGAEA.902309" | ||
267 | } | 295 | } |