You're currently viewing an old version of this dataset. To see the current version, click here.

TWIN V2: Scaling Ultra-Long User Behavior Sequence Modeling for Enhanced CTR Prediction at Kuaishou

The dataset is a large-scale industrial dataset collected from Kuaishou, containing user interaction data with click-through as labels. The dataset has a maximum history length of 100,000 items for clustering life-cycle user behavior.

Data and Resources

Cite this as

Zihua Si, Renmin University of China, Kuaishou Technology Co., Ltd., Xiaoxue Zang, Kuaishou Technology Co., Ltd., Xingchao Cao, Kuaishou Technology Co., Ltd., Dewei Leng, Kuaishou Technology Co., Ltd., Yanan Niu, Kuaishou Technology Co., Ltd., Lin Guan, Kuaishou Technology Co., Ltd., Jing Lu, Kuaishou Technology Co., Ltd., Zeyu Yang, Kuaishou Technology Co., Ltd., Kai Zheng, Kuaishou Technology Co., Ltd., Yang Song, Kuaishou Technology Co., Ltd., Zhongxiang Sun, Renmin University of China, Yiqun Hui, Kuaishou Technology Co., Ltd., Yichen Zheng, Kuaishou Technology Co., Ltd., Chenbin Zhang, Kuaishou Technology Co., Ltd., Kun Gai, Independent (2025). Dataset: TWIN V2: Scaling Ultra-Long User Behavior Sequence Modeling for Enhanced CTR Prediction at Kuaishou. https://doi.org/10.57702/nmckhotw

DOI retrieved: January 2, 2025

Additional Info

Field Value
Created January 2, 2025
Last update January 2, 2025
Defined In https://doi.org/10.1145/3627673.3680030
Author Zihua Si
More Authors
Renmin University of China
Kuaishou Technology Co., Ltd.
Xiaoxue Zang
Kuaishou Technology Co., Ltd.
Xingchao Cao
Kuaishou Technology Co., Ltd.
Dewei Leng
Kuaishou Technology Co., Ltd.
Yanan Niu
Kuaishou Technology Co., Ltd.
Lin Guan
Kuaishou Technology Co., Ltd.
Jing Lu
Kuaishou Technology Co., Ltd.
Zeyu Yang
Kuaishou Technology Co., Ltd.
Kai Zheng
Kuaishou Technology Co., Ltd.
Yang Song
Kuaishou Technology Co., Ltd.
Zhongxiang Sun
Renmin University of China
Yiqun Hui
Kuaishou Technology Co., Ltd.
Yichen Zheng
Kuaishou Technology Co., Ltd.
Chenbin Zhang
Kuaishou Technology Co., Ltd.
Kun Gai
Independent
Homepage https://doi.org/10.1145/3627673.3680030