-
Cityscapes
The Cityscapes dataset is a large and famous city street scene semantic segmentation dataset. 19 classes of which 30 classes of this dataset are considered for training and... -
KITTI dataset
The dataset used in the paper is the KITTI dataset, which is a benchmark for monocular depth estimation. The dataset consists of a large collection of images and corresponding... -
Microsoft COCO
The Microsoft COCO dataset was used for training and evaluating the CNNs because it has become a standard benchmark for testing algorithms aimed at scene understanding and... -
ImageNet Large Scale Visual Recognition Challenge
A benchmark for low-shot recognition was proposed by Hariharan & Girshick (2017) and consists of a representation learning phase without access to the low-shot classes and a... -
KITTI 2015
The KITTI 2015 dataset is a real-world dataset of street views, containing 200 training stereo image pairs with sparsely labeled disparity from LiDAR data.