The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the equatorial Pacific Ocean
Planktonic foraminifera from a continuous Oligocene succession with clear magnetochronology and sediment cycles at Ocean Drilling Program Site 1218 (equatorial Pacific Ocean) were studied in the interval from 27 to 30 Ma. Paragloborotalia taxa are common and we examined their size, relative abundance, and stable isotopes. Multispecies stable isotope data indicate the depth habitats of Oligocene planktonic foraminifera and suggest that “Globoquadrina” venezuelana and Dentoglobigerina globularis were probably mixed-layer dwellers, with paragloborotaliids recording heavier delta18O signatures consistent with a thermocline habitat. Cyclic variations in the abundance of Paragloborotalia match eccentricity (100 kyr) variations in percent carbonate and delta13C, suggesting orbitally forced upwelling in the equatorial Pacific Ocean and that Paragloborotalia were responding directly to changes in surface water productivity. The high-resolution biostratigraphy calibrated to the magnetochronology constrains the extinction of Paragloborotalia opima which marks the top of Planktonic Foraminifera Biozone O5 (P21b) at 27.456 Ma. The highest occurrence of P. opima is associated with a 50% size decrease in Paragloborotalia pseudocontinuosa taxa within Chron 9n. In addition, we find the extinction of Chiloguembelina cubensis is consistent with other deep-sea sections within Chron 10n at 28.426 Ma marking the O4/O5 (P21a/P21b) boundary.
BibTex: