Data to investigate the role of Pomatoschistus microps in intertidal food webs, sampled off the island of Sylt

Ecological network analysis (ENA) was used to study the effects of Pomatoschistus microps on energy transport through the food web, its impact on other compartments and its possible role as a keystone species in the trophic webs of an Arenicola tidal flat ecosystem and a sparse Zostera noltii bed ecosystem. Three ENA models were constructed: (a) model 1 contains data of the original food web from prior research in the investigated area by Baird et al. (2007), (b) an updated model 2 which included biomass and diet data of P. microps from recent sampling, and (c) model 3 simulating a food web without P. microps. A comparison of energy transport between the different models revealed that more energy is transported from lower trophic levels up the food chain, in the presence of P. microps (models 1 and 2) than in its absence (model 3). Calculations of the keystone index (KSi) revealed the high overall impact (measured as eps_i) of this fish species on food webs. In model 1, P. microps was assigned a low KSi in the Arenicola flat and in the sparse Z. noltii bed. Calculations in model 2 ranked P. microps first for keystoneness and eps_i in both communities, the Arenicola flat and the sparse Z. noltii bed. Taken together, our results give insight into the role of P. microps when considering a whole food web and reveal direct and indirect trophic interactions of this small-sized fish species. These results might illustrate the impact and importance of abundant, widespread species in food webs and facilitate further investigations.

BibTex: