An improved Remote Sensing-based global Surface Soil Moisture dataset (RSSSM, 2003-2020)

This dataset is an update of our previous dataset published on doi:10.1594/PANGAEA.912597. Based on 11 well-acknowledged global-scale microwave remote sensing-based surface soil moisture products, and with 9 main quality impact factors of microwave-based soil moisture retrieval incorporated, we developed the Remote Sensing-based global Surface Soil Moisture dataset (RSSSM, 2003~2020) through a complicated neural network approach. The spatial resolution of RSSSM is 0.1°, while the temporal resolution is approximately 10 days. The original dataset covered 2003~2018, but now it has been updated to 2020. RSSSM dataset is outstanding in terms of temporal continuity, and has full spatial coverage except for snow, ice and water bodies. The comparison against the global-scale in-situ soil moisture measurements indicates that RSSSM has a higher spatial and temporal accuracy than most of the frequently-used global/regional long-term surface soil moisture datasets. In addition, although RSSSM is remote sensing based, without the incorporation of any precipitation data or records, its interannual variation generally conforms with that of precipitation (e.g., the GPM IMERG precipitation data) and Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, RSSSM can also reflect the impact of human activities, e.g., urbanization, cropland irrigation and afforestation on soil moisture changes to some degree. The data is in 'Tiff' format, and the size after compression is 2.44 GB. The relevant data describing paper has been published in the Journal 'Earth System Science Data' in 2021.

BibTex: