Seawater carbonate chemistry and the algae phytoremediation capacity, the ecotoxicological responses and total chlorophyll and carotenoid contents in Ulva rigida
Anthropogenic increased atmospheric CO2 concentrations will lead to a drop of 0.4 units of seawater pH and ocean warming up to 4.8°C by 2100. Contaminant's toxicity is known to increase under a climate change scenario. Rare earth elements (REE) are emerging contaminants, that until now have no regulation regarding maximum concentration and discharge into the environment and have become vital to new technologies such as electric and hybrid-electric vehicle batteries, wind turbine generators and low-energy lighting. Studies of REE, namely Lanthanum (La) and Gadolinium (Gd), bioaccumulation, elimination, and toxicity in a multi-stressor environment (e.g., warming and acidification) are lacking. Hence, we investigated the algae phytoremediation capacity, the ecotoxicological responses and total chlorophyll and carotenoid contents in Ulva rigida during 7 days of co-exposure to La or Gd (15 µg/L or 10 µg/L, respectively), and warming and acidification. Additionally, we assessed these metals elimination, after a 7-day phase. After one day of experiment La and Gd clearly showed accumulation/adsorption in different patterns, at future conditions. Unlikely for Gd, Warming and Acidification contributed to the lowest La accumulation, and increased elimination. Lanthanum and Gd triggered an adequate activation of the antioxidant defence system, by avoiding lipid damage. Nevertheless, REE exposure in a near-future scenario triggered an overproduction of ROS that requested an enhanced antioxidant response. Additionally, an increase in total chlorophyll and carotenoids could also indicate an unforeseen energy expense, as a response to a multi-stressor environment.
BibTex: