Changes
On August 4, 2023 at 8:46:43 AM UTC, admin:
-
Set author of Parameter Optimization for the HYPE model with Shuffled Frog Leaping Algorithm (SFLA) to Prajna Kasargodu Anebagilu (previously Prajna Kasargodu Anebagilu, Xinyu Li)
f | 1 | { | f | 1 | { |
n | 2 | "author": "Prajna Kasargodu Anebagilu, Xinyu Li", | n | 2 | "author": "Prajna Kasargodu Anebagilu", |
3 | "author_email": "prajna@iww.uni-hannover.de", | 3 | "author_email": "prajna@iww.uni-hannover.de", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.25835/u0wna7hm", | 5 | "doi": "10.25835/u0wna7hm", | ||
6 | "doi_date_published": "2022-04-27", | 6 | "doi_date_published": "2022-04-27", | ||
7 | "doi_publisher": "LUIS", | 7 | "doi_publisher": "LUIS", | ||
8 | "doi_status": "true", | 8 | "doi_status": "true", | ||
9 | "domain": "https://data.uni-hannover.de", | 9 | "domain": "https://data.uni-hannover.de", | ||
n | n | 10 | "extra_authors": [ | ||
11 | { | ||||
12 | "extra_author": " Xinyu Li" | ||||
13 | } | ||||
14 | ], | ||||
10 | "groups": [], | 15 | "groups": [], | ||
11 | "have_copyright": "Yes", | 16 | "have_copyright": "Yes", | ||
12 | "id": "bcdd24c2-2ad8-4561-9196-84797b7cb324", | 17 | "id": "bcdd24c2-2ad8-4561-9196-84797b7cb324", | ||
13 | "isopen": false, | 18 | "isopen": false, | ||
14 | "license_id": "CC-BY-3.0", | 19 | "license_id": "CC-BY-3.0", | ||
15 | "license_title": "CC-BY-3.0", | 20 | "license_title": "CC-BY-3.0", | ||
16 | "maintainer": "J\u00f6rg Dietrich", | 21 | "maintainer": "J\u00f6rg Dietrich", | ||
17 | "maintainer_email": "dietrich@iww.uni-hannover.de", | 22 | "maintainer_email": "dietrich@iww.uni-hannover.de", | ||
18 | "metadata_created": "2023-01-12T13:14:23.074515", | 23 | "metadata_created": "2023-01-12T13:14:23.074515", | ||
n | 19 | "metadata_modified": "2023-01-12T13:14:23.074521", | n | 24 | "metadata_modified": "2023-08-04T08:46:43.543959", |
20 | "name": | 25 | "name": | ||
21 | ization-for-the-hype-model-with-shuffled-frog-leaping-algorithm-sfla", | 26 | ization-for-the-hype-model-with-shuffled-frog-leaping-algorithm-sfla", | ||
22 | "notes": "Python scripts for controlling parameter optimization for | 27 | "notes": "Python scripts for controlling parameter optimization for | ||
23 | the hydrological model HYPE. The scripts can be used to optimize model | 28 | the hydrological model HYPE. The scripts can be used to optimize model | ||
24 | parameters with the Shuffled Frog Leaping Algorithm (SFLA). | 29 | parameters with the Shuffled Frog Leaping Algorithm (SFLA). | ||
25 | Additionally, there is a modification of the Differential Evolution | 30 | Additionally, there is a modification of the Differential Evolution | ||
26 | Markov Chain (DEMC) algorithm, which has been previously applied for | 31 | Markov Chain (DEMC) algorithm, which has been previously applied for | ||
27 | HYPE.\r\nIn this first version, all parameters of SFLA as well as of | 32 | HYPE.\r\nIn this first version, all parameters of SFLA as well as of | ||
28 | HYPE are hard coded within one script. HYPE version 5.8.0 was used | 33 | HYPE are hard coded within one script. HYPE version 5.8.0 was used | ||
29 | without modifications of the code. At the end of each simulation, HYPE | 34 | without modifications of the code. At the end of each simulation, HYPE | ||
30 | opens a window and asks for a confirmation to exit this window. We | 35 | opens a window and asks for a confirmation to exit this window. We | ||
31 | have used an auto-clicker to overcome that step. However, modifying | 36 | have used an auto-clicker to overcome that step. However, modifying | ||
32 | the HYPE code would be a better solution for future releases.", | 37 | the HYPE code would be a better solution for future releases.", | ||
33 | "num_resources": 1, | 38 | "num_resources": 1, | ||
34 | "num_tags": 4, | 39 | "num_tags": 4, | ||
35 | "organization": { | 40 | "organization": { | ||
36 | "approval_status": "approved", | 41 | "approval_status": "approved", | ||
37 | "created": "2021-10-14T10:16:06.663983", | 42 | "created": "2021-10-14T10:16:06.663983", | ||
38 | "description": "Appelstr. 9A\r\nD-30167 Hannover, | 43 | "description": "Appelstr. 9A\r\nD-30167 Hannover, | ||
39 | Germany\r\n\r\nTel.: +49-(0)511-762--2237, Fax: | 44 | Germany\r\n\r\nTel.: +49-(0)511-762--2237, Fax: | ||
40 | -3731\r\n\r\nhttp://www.iww.uni-hannover.de", | 45 | -3731\r\n\r\nhttp://www.iww.uni-hannover.de", | ||
41 | "id": "41bf3553-85fb-4fef-bd21-5ce577e837b3", | 46 | "id": "41bf3553-85fb-4fef-bd21-5ce577e837b3", | ||
42 | "image_url": "", | 47 | "image_url": "", | ||
43 | "is_organization": true, | 48 | "is_organization": true, | ||
44 | "name": "institut-fur-hydrologie-und-wasserwirtschaft", | 49 | "name": "institut-fur-hydrologie-und-wasserwirtschaft", | ||
45 | "state": "active", | 50 | "state": "active", | ||
46 | "title": "Institut f\u00fcr Hydrologie und Wasserwirtschaft", | 51 | "title": "Institut f\u00fcr Hydrologie und Wasserwirtschaft", | ||
47 | "type": "organization" | 52 | "type": "organization" | ||
48 | }, | 53 | }, | ||
49 | "owner_org": "41bf3553-85fb-4fef-bd21-5ce577e837b3", | 54 | "owner_org": "41bf3553-85fb-4fef-bd21-5ce577e837b3", | ||
50 | "private": false, | 55 | "private": false, | ||
51 | "relationships_as_object": [], | 56 | "relationships_as_object": [], | ||
52 | "relationships_as_subject": [], | 57 | "relationships_as_subject": [], | ||
53 | "repository_name": "Leibniz University Hannover", | 58 | "repository_name": "Leibniz University Hannover", | ||
54 | "resources": [ | 59 | "resources": [ | ||
55 | { | 60 | { | ||
56 | "cache_last_updated": null, | 61 | "cache_last_updated": null, | ||
57 | "cache_url": null, | 62 | "cache_url": null, | ||
58 | "created": "2022-04-27T19:28:39.830009", | 63 | "created": "2022-04-27T19:28:39.830009", | ||
59 | "description": "Python scripts for controlling parameter | 64 | "description": "Python scripts for controlling parameter | ||
60 | optimization for the hydrological model HYPE. The scripts can be used | 65 | optimization for the hydrological model HYPE. The scripts can be used | ||
61 | to optimize model parameters with the Shuffled Frog Leaping Algorithm | 66 | to optimize model parameters with the Shuffled Frog Leaping Algorithm | ||
62 | (SFLA). Additionally, there is a modification of the Differential | 67 | (SFLA). Additionally, there is a modification of the Differential | ||
63 | Evolution Markov Chain (DEMC) algorithm, which has been previously | 68 | Evolution Markov Chain (DEMC) algorithm, which has been previously | ||
64 | applied for HYPE. In this first version, all parameters of SFLA as | 69 | applied for HYPE. In this first version, all parameters of SFLA as | ||
65 | well as of HYPE are hard coded within one script. HYPE version 5.8.0 | 70 | well as of HYPE are hard coded within one script. HYPE version 5.8.0 | ||
66 | was used without modifications of the code. At the end of each | 71 | was used without modifications of the code. At the end of each | ||
67 | simulation, HYPE opens a window and asks for a confirmation to exit | 72 | simulation, HYPE opens a window and asks for a confirmation to exit | ||
68 | this window. We have used an auto-clicker to overcome that step. | 73 | this window. We have used an auto-clicker to overcome that step. | ||
69 | However, modifying the HYPE code would be a better solution for future | 74 | However, modifying the HYPE code would be a better solution for future | ||
70 | releases.", | 75 | releases.", | ||
71 | "format": "ZIP", | 76 | "format": "ZIP", | ||
72 | "hash": "", | 77 | "hash": "", | ||
73 | "id": "eb7f465b-8500-425e-93a4-3fc56a05a825", | 78 | "id": "eb7f465b-8500-425e-93a4-3fc56a05a825", | ||
74 | "last_modified": "2022-04-27T19:28:39.786393", | 79 | "last_modified": "2022-04-27T19:28:39.786393", | ||
n | 75 | "metadata_modified": "2023-01-12T13:14:23.067423", | n | 80 | "metadata_modified": "2023-08-04T08:46:43.547244", |
76 | "mimetype": "application/zip", | 81 | "mimetype": "application/zip", | ||
77 | "mimetype_inner": null, | 82 | "mimetype_inner": null, | ||
78 | "name": "Parameter_optimization_SFLA_HYPE.zip", | 83 | "name": "Parameter_optimization_SFLA_HYPE.zip", | ||
79 | "package_id": "bcdd24c2-2ad8-4561-9196-84797b7cb324", | 84 | "package_id": "bcdd24c2-2ad8-4561-9196-84797b7cb324", | ||
80 | "position": 0, | 85 | "position": 0, | ||
81 | "resource_type": null, | 86 | "resource_type": null, | ||
82 | "size": 16564, | 87 | "size": 16564, | ||
83 | "state": "active", | 88 | "state": "active", | ||
84 | "url": | 89 | "url": | ||
85 | 425e-93a4-3fc56a05a825/download/parameter_optimization_sfla_hype.zip", | 90 | 425e-93a4-3fc56a05a825/download/parameter_optimization_sfla_hype.zip", | ||
86 | "url_type": "" | 91 | "url_type": "" | ||
87 | } | 92 | } | ||
88 | ], | 93 | ], | ||
t | t | 94 | "services_used_list": "", | ||
89 | "source_metadata_created": "2022-04-27T19:27:24.710168", | 95 | "source_metadata_created": "2022-04-27T19:27:24.710168", | ||
90 | "source_metadata_modified": "2022-04-28T09:36:47.706136", | 96 | "source_metadata_modified": "2022-04-28T09:36:47.706136", | ||
91 | "state": "active", | 97 | "state": "active", | ||
92 | "tags": [ | 98 | "tags": [ | ||
93 | { | 99 | { | ||
94 | "display_name": "HYPE", | 100 | "display_name": "HYPE", | ||
95 | "id": "e07f85e3-747e-4e61-a110-4cf54a6e3a4a", | 101 | "id": "e07f85e3-747e-4e61-a110-4cf54a6e3a4a", | ||
96 | "name": "HYPE", | 102 | "name": "HYPE", | ||
97 | "state": "active", | 103 | "state": "active", | ||
98 | "vocabulary_id": null | 104 | "vocabulary_id": null | ||
99 | }, | 105 | }, | ||
100 | { | 106 | { | ||
101 | "display_name": "metaheuristics", | 107 | "display_name": "metaheuristics", | ||
102 | "id": "cd2f708a-77e5-4852-a164-df89405c1ebf", | 108 | "id": "cd2f708a-77e5-4852-a164-df89405c1ebf", | ||
103 | "name": "metaheuristics", | 109 | "name": "metaheuristics", | ||
104 | "state": "active", | 110 | "state": "active", | ||
105 | "vocabulary_id": null | 111 | "vocabulary_id": null | ||
106 | }, | 112 | }, | ||
107 | { | 113 | { | ||
108 | "display_name": "optimization", | 114 | "display_name": "optimization", | ||
109 | "id": "5ea0f976-acd6-4b37-9323-fa594dbf6fda", | 115 | "id": "5ea0f976-acd6-4b37-9323-fa594dbf6fda", | ||
110 | "name": "optimization", | 116 | "name": "optimization", | ||
111 | "state": "active", | 117 | "state": "active", | ||
112 | "vocabulary_id": null | 118 | "vocabulary_id": null | ||
113 | }, | 119 | }, | ||
114 | { | 120 | { | ||
115 | "display_name": "shuffled frog leaping algorithm", | 121 | "display_name": "shuffled frog leaping algorithm", | ||
116 | "id": "7e8494fc-c1cc-4a03-8434-93eda1151ff5", | 122 | "id": "7e8494fc-c1cc-4a03-8434-93eda1151ff5", | ||
117 | "name": "shuffled frog leaping algorithm", | 123 | "name": "shuffled frog leaping algorithm", | ||
118 | "state": "active", | 124 | "state": "active", | ||
119 | "vocabulary_id": null | 125 | "vocabulary_id": null | ||
120 | } | 126 | } | ||
121 | ], | 127 | ], | ||
122 | "terms_of_usage": "Yes", | 128 | "terms_of_usage": "Yes", | ||
123 | "title": "Parameter Optimization for the HYPE model with Shuffled | 129 | "title": "Parameter Optimization for the HYPE model with Shuffled | ||
124 | Frog Leaping Algorithm (SFLA)", | 130 | Frog Leaping Algorithm (SFLA)", | ||
125 | "type": "vdataset", | 131 | "type": "vdataset", | ||
126 | "url": | 132 | "url": | ||
127 | ization-for-the-hype-model-with-shuffled-frog-leaping-algorithm-sfla", | 133 | ization-for-the-hype-model-with-shuffled-frog-leaping-algorithm-sfla", | ||
128 | "version": "0.8" | 134 | "version": "0.8" | ||
129 | } | 135 | } |