Changes
On August 4, 2023 at 8:46:49 AM UTC, admin:
-
Set author of Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model to Daniel Borcherding (previously Daniel Borcherding, Holger Frahm)
-
Removed field
datastore_active
from resource Data for Fig. 5 of J. Phys. A 51 (2018) 195001 in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model -
Removed field
datastore_active
from resource Data for Fig. 3 of J. Phys. A 51 (2018) 195001 in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model -
Removed field
datastore_active
from resource preprint arXiv:1706.09822 in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model -
Removed field
datastore_active
from resource Data for Fig. 4(a) of J. Phys. A 51 (2018) 195001 in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model -
Removed field
datastore_active
from resource Data for Fig. 4(b) of J. Phys. A 51 (2018) 195001 in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model -
Removed field
datastore_active
from resource Data for Fig. 2(b) of J. Phys. A 51 (2018) 195001 in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model -
Removed field
datastore_active
from resource Data for Fig. 2(a) of J. Phys. A 51 (2018) 195001 in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model -
Removed field
datastore_active
from resource Mathematica.zip in Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model
f | 1 | { | f | 1 | { |
n | 2 | "author": "Daniel Borcherding, Holger Frahm", | n | 2 | "author": "Daniel Borcherding", |
3 | "author_email": "frahm@itp.uni-hannover.de", | 3 | "author_email": "frahm@itp.uni-hannover.de", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.25835/0067125", | 5 | "doi": "10.25835/0067125", | ||
6 | "doi_date_published": "2019-04-03", | 6 | "doi_date_published": "2019-04-03", | ||
7 | "doi_publisher": "LUIS", | 7 | "doi_publisher": "LUIS", | ||
8 | "doi_status": "true", | 8 | "doi_status": "true", | ||
9 | "domain": "https://data.uni-hannover.de", | 9 | "domain": "https://data.uni-hannover.de", | ||
n | n | 10 | "extra_authors": [ | ||
11 | { | ||||
12 | "extra_author": " Holger Frahm" | ||||
13 | } | ||||
14 | ], | ||||
10 | "groups": [], | 15 | "groups": [], | ||
11 | "have_copyright": "Yes", | 16 | "have_copyright": "Yes", | ||
12 | "id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 17 | "id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
13 | "isopen": false, | 18 | "isopen": false, | ||
14 | "license_id": "CC-BY-3.0", | 19 | "license_id": "CC-BY-3.0", | ||
15 | "license_title": "CC-BY-3.0", | 20 | "license_title": "CC-BY-3.0", | ||
16 | "maintainer": "Daniel Borcherding", | 21 | "maintainer": "Daniel Borcherding", | ||
17 | "maintainer_email": "", | 22 | "maintainer_email": "", | ||
18 | "metadata_created": "2021-10-14T10:16:07.742726", | 23 | "metadata_created": "2021-10-14T10:16:07.742726", | ||
n | 19 | "metadata_modified": "2021-10-14T10:16:07.742731", | n | 24 | "metadata_modified": "2023-08-04T08:46:49.048822", |
20 | "name": "luh-su2k-non-abelian-anyons-thermodynamics", | 25 | "name": "luh-su2k-non-abelian-anyons-thermodynamics", | ||
21 | "notes": "Plots, data and Mathematica notebooks for the | 26 | "notes": "Plots, data and Mathematica notebooks for the | ||
22 | paper:\r\n\r\nDaniel Borcherding and Holger Frahm (2018): Signatures | 27 | paper:\r\n\r\nDaniel Borcherding and Holger Frahm (2018): Signatures | ||
23 | of non-Abelian anyons in the thermodynamics of an interacting fermion | 28 | of non-Abelian anyons in the thermodynamics of an interacting fermion | ||
24 | model, J. Phys. A: Math. Theor. 51 195001 \r\nDOI: | 29 | model, J. Phys. A: Math. Theor. 51 195001 \r\nDOI: | ||
25 | https://10.1088/1751-8121/aaba1e \r\narXiv: 1706.09822\r\n\r\nand the | 30 | https://10.1088/1751-8121/aaba1e \r\narXiv: 1706.09822\r\n\r\nand the | ||
26 | doctoral thesis:\r\n\r\nDaniel Borcherding (2018): Non-Abelian | 31 | doctoral thesis:\r\n\r\nDaniel Borcherding (2018): Non-Abelian | ||
27 | quasi-particles in electronic systems. Gottfried Wilhelm Leibniz | 32 | quasi-particles in electronic systems. Gottfried Wilhelm Leibniz | ||
28 | Universit\u00e4t Hannover, Diss.\r\nDOI: | 33 | Universit\u00e4t Hannover, Diss.\r\nDOI: | ||
29 | https://doi.org/10.15488/4280", | 34 | https://doi.org/10.15488/4280", | ||
30 | "num_resources": 8, | 35 | "num_resources": 8, | ||
31 | "num_tags": 2, | 36 | "num_tags": 2, | ||
32 | "organization": { | 37 | "organization": { | ||
33 | "approval_status": "approved", | 38 | "approval_status": "approved", | ||
34 | "created": "2021-10-14T10:15:55.193734", | 39 | "created": "2021-10-14T10:15:55.193734", | ||
35 | "description": "https://www.itp.uni-hannover.de/agfrahm.html", | 40 | "description": "https://www.itp.uni-hannover.de/agfrahm.html", | ||
36 | "id": "5bb3488c-e223-4283-a276-5697b2c526e9", | 41 | "id": "5bb3488c-e223-4283-a276-5697b2c526e9", | ||
37 | "image_url": "", | 42 | "image_url": "", | ||
38 | "is_organization": true, | 43 | "is_organization": true, | ||
39 | "name": "ag-frahm", | 44 | "name": "ag-frahm", | ||
40 | "state": "active", | 45 | "state": "active", | ||
41 | "title": "AG Frahm", | 46 | "title": "AG Frahm", | ||
42 | "type": "organization" | 47 | "type": "organization" | ||
43 | }, | 48 | }, | ||
44 | "owner_org": "5bb3488c-e223-4283-a276-5697b2c526e9", | 49 | "owner_org": "5bb3488c-e223-4283-a276-5697b2c526e9", | ||
45 | "private": false, | 50 | "private": false, | ||
46 | "relationships_as_object": [], | 51 | "relationships_as_object": [], | ||
47 | "relationships_as_subject": [], | 52 | "relationships_as_subject": [], | ||
48 | "repository_name": "Leibniz University Hannover", | 53 | "repository_name": "Leibniz University Hannover", | ||
49 | "resources": [ | 54 | "resources": [ | ||
50 | { | 55 | { | ||
51 | "cache_last_updated": null, | 56 | "cache_last_updated": null, | ||
52 | "cache_url": null, | 57 | "cache_url": null, | ||
53 | "created": "2019-06-27T09:37:53.802084", | 58 | "created": "2019-06-27T09:37:53.802084", | ||
n | 54 | "datastore_active": false, | n | ||
55 | "description": "\"Signatures of non-Abelian anyons in the | 59 | "description": "\"Signatures of non-Abelian anyons in the | ||
56 | thermodynamics of an interacting fermion model\", Daniel Borcherding, | 60 | thermodynamics of an interacting fermion model\", Daniel Borcherding, | ||
57 | Holger Frahm", | 61 | Holger Frahm", | ||
58 | "format": "", | 62 | "format": "", | ||
59 | "hash": "", | 63 | "hash": "", | ||
60 | "id": "ae40b964-4d3e-45cd-a8c3-eaae6a7a6ce4", | 64 | "id": "ae40b964-4d3e-45cd-a8c3-eaae6a7a6ce4", | ||
61 | "last_modified": null, | 65 | "last_modified": null, | ||
n | 62 | "metadata_modified": "2021-10-14T10:16:07.729093", | n | 66 | "metadata_modified": "2023-08-04T08:46:49.053187", |
63 | "mimetype": null, | 67 | "mimetype": null, | ||
64 | "mimetype_inner": null, | 68 | "mimetype_inner": null, | ||
65 | "name": "preprint arXiv:1706.09822", | 69 | "name": "preprint arXiv:1706.09822", | ||
66 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 70 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
67 | "position": 0, | 71 | "position": 0, | ||
68 | "resource_type": null, | 72 | "resource_type": null, | ||
n | 69 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
70 | "size": null, | 73 | "size": null, | ||
71 | "state": "active", | 74 | "state": "active", | ||
72 | "url": "https://arxiv.org/abs/1706.09822", | 75 | "url": "https://arxiv.org/abs/1706.09822", | ||
73 | "url_type": "" | 76 | "url_type": "" | ||
74 | }, | 77 | }, | ||
75 | { | 78 | { | ||
76 | "cache_last_updated": null, | 79 | "cache_last_updated": null, | ||
77 | "cache_url": null, | 80 | "cache_url": null, | ||
78 | "created": "2019-03-18T13:36:09.413221", | 81 | "created": "2019-03-18T13:36:09.413221", | ||
n | 79 | "datastore_active": false, | n | ||
80 | "description": "The zero temperature spectrum of excitations | 82 | "description": "The zero temperature spectrum of excitations | ||
81 | (and Fermi energy of the kinks for $zH>M_0$, respectively) | 83 | (and Fermi energy of the kinks for $zH>M_0$, respectively) | ||
82 | $\\epsilon_j(0)$ obtained from the numerical solution of (3.4) as | 84 | $\\epsilon_j(0)$ obtained from the numerical solution of (3.4) as | ||
83 | function of the magnetic field for $N_f=3$. The number and masses of | 85 | function of the magnetic field for $N_f=3$. The number and masses of | ||
84 | the breather modes depend on the value of $\\nu$. In this plot $\\nu = | 86 | the breather modes depend on the value of $\\nu$. In this plot $\\nu = | ||
85 | 3$. The low lying modes with energies described by the auxiliary | 87 | 3$. The low lying modes with energies described by the auxiliary | ||
86 | functions are clearly separated from the spectrum of kinks, antikinks | 88 | functions are clearly separated from the spectrum of kinks, antikinks | ||
87 | and breathers. Their degeneracy is lifted as soon as the kink gap | 89 | and breathers. Their degeneracy is lifted as soon as the kink gap | ||
88 | closes.", | 90 | closes.", | ||
89 | "format": "ZIP", | 91 | "format": "ZIP", | ||
90 | "hash": "", | 92 | "hash": "", | ||
91 | "id": "937efb8f-7467-4792-a460-94f5d01ce17b", | 93 | "id": "937efb8f-7467-4792-a460-94f5d01ce17b", | ||
92 | "last_modified": "2019-03-18T13:36:09.354144", | 94 | "last_modified": "2019-03-18T13:36:09.354144", | ||
n | 93 | "metadata_modified": "2021-10-14T10:16:07.730344", | n | 95 | "metadata_modified": "2023-08-04T08:46:49.053322", |
94 | "mimetype": "application/zip", | 96 | "mimetype": "application/zip", | ||
95 | "mimetype_inner": null, | 97 | "mimetype_inner": null, | ||
96 | "name": "Data for Fig. 2(a) of J. Phys. A 51 (2018) 195001", | 98 | "name": "Data for Fig. 2(a) of J. Phys. A 51 (2018) 195001", | ||
97 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 99 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
98 | "position": 1, | 100 | "position": 1, | ||
99 | "resource_type": null, | 101 | "resource_type": null, | ||
n | 100 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
101 | "size": 16243, | 102 | "size": 16243, | ||
102 | "state": "active", | 103 | "state": "active", | ||
103 | "url": | 104 | "url": | ||
104 | ource/937efb8f-7467-4792-a460-94f5d01ce17b/download/spectrum_3_3.zip", | 105 | ource/937efb8f-7467-4792-a460-94f5d01ce17b/download/spectrum_3_3.zip", | ||
105 | "url_type": "" | 106 | "url_type": "" | ||
106 | }, | 107 | }, | ||
107 | { | 108 | { | ||
108 | "cache_last_updated": null, | 109 | "cache_last_updated": null, | ||
109 | "cache_url": null, | 110 | "cache_url": null, | ||
110 | "created": "2019-03-18T13:36:35.660890", | 111 | "created": "2019-03-18T13:36:35.660890", | ||
n | 111 | "datastore_active": false, | n | ||
112 | "description": "The zero temperature spectrum of excitations | 112 | "description": "The zero temperature spectrum of excitations | ||
113 | (and Fermi energy of the kinks for $zH>M_0$, respectively) | 113 | (and Fermi energy of the kinks for $zH>M_0$, respectively) | ||
114 | $\\epsilon_j(0)$ obtained from the numerical solution of (3.4) as | 114 | $\\epsilon_j(0)$ obtained from the numerical solution of (3.4) as | ||
115 | function of the magnetic field for $N_f=3$. The number and masses of | 115 | function of the magnetic field for $N_f=3$. The number and masses of | ||
116 | the breather modes depend on the value of $\\nu$. In this plot $\\nu = | 116 | the breather modes depend on the value of $\\nu$. In this plot $\\nu = | ||
117 | 4$. The low lying modes with energies described by the auxiliary | 117 | 4$. The low lying modes with energies described by the auxiliary | ||
118 | functions are clearly separated from the spectrum of kinks, antikinks | 118 | functions are clearly separated from the spectrum of kinks, antikinks | ||
119 | and breathers. Their degeneracy is lifted as soon as the kink gap | 119 | and breathers. Their degeneracy is lifted as soon as the kink gap | ||
120 | closes.", | 120 | closes.", | ||
121 | "format": "ZIP", | 121 | "format": "ZIP", | ||
122 | "hash": "", | 122 | "hash": "", | ||
123 | "id": "8d3e0c0f-1995-40da-a900-cdbb09c7dcb7", | 123 | "id": "8d3e0c0f-1995-40da-a900-cdbb09c7dcb7", | ||
124 | "last_modified": "2019-03-18T13:36:35.602738", | 124 | "last_modified": "2019-03-18T13:36:35.602738", | ||
n | 125 | "metadata_modified": "2021-10-14T10:16:07.731600", | n | 125 | "metadata_modified": "2023-08-04T08:46:49.053432", |
126 | "mimetype": "application/zip", | 126 | "mimetype": "application/zip", | ||
127 | "mimetype_inner": null, | 127 | "mimetype_inner": null, | ||
128 | "name": "Data for Fig. 2(b) of J. Phys. A 51 (2018) 195001", | 128 | "name": "Data for Fig. 2(b) of J. Phys. A 51 (2018) 195001", | ||
129 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 129 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
130 | "position": 2, | 130 | "position": 2, | ||
131 | "resource_type": null, | 131 | "resource_type": null, | ||
n | 132 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
133 | "size": 17768, | 132 | "size": 17768, | ||
134 | "state": "active", | 133 | "state": "active", | ||
135 | "url": | 134 | "url": | ||
136 | ource/8d3e0c0f-1995-40da-a900-cdbb09c7dcb7/download/spectrum_3_4.zip", | 135 | ource/8d3e0c0f-1995-40da-a900-cdbb09c7dcb7/download/spectrum_3_4.zip", | ||
137 | "url_type": "" | 136 | "url_type": "" | ||
138 | }, | 137 | }, | ||
139 | { | 138 | { | ||
140 | "cache_last_updated": null, | 139 | "cache_last_updated": null, | ||
141 | "cache_url": null, | 140 | "cache_url": null, | ||
142 | "created": "2019-03-18T13:34:15.475413", | 141 | "created": "2019-03-18T13:34:15.475413", | ||
n | 143 | "datastore_active": false, | n | ||
144 | "description": "Fermi velocities of kinks and parafermion modes | 142 | "description": "Fermi velocities of kinks and parafermion modes | ||
145 | as a function of the magnetic field $zH>M_0$ for $p_0=2+1/3$ at zero | 143 | as a function of the magnetic field $zH>M_0$ for $p_0=2+1/3$ at zero | ||
146 | temperature. For large field, $H>H_\\delta$, both Fermi velocities | 144 | temperature. For large field, $H>H_\\delta$, both Fermi velocities | ||
147 | approach $1$ leading to the asymptotic result for the low temperature | 145 | approach $1$ leading to the asymptotic result for the low temperature | ||
148 | entropy (3.16).", | 146 | entropy (3.16).", | ||
149 | "format": "ZIP", | 147 | "format": "ZIP", | ||
150 | "hash": "", | 148 | "hash": "", | ||
151 | "id": "ea15fe66-b292-4e90-9a0a-d38ef306cf13", | 149 | "id": "ea15fe66-b292-4e90-9a0a-d38ef306cf13", | ||
152 | "last_modified": "2019-03-18T13:34:15.425217", | 150 | "last_modified": "2019-03-18T13:34:15.425217", | ||
n | 153 | "metadata_modified": "2021-10-14T10:16:07.732847", | n | 151 | "metadata_modified": "2023-08-04T08:46:49.053547", |
154 | "mimetype": "application/zip", | 152 | "mimetype": "application/zip", | ||
155 | "mimetype_inner": null, | 153 | "mimetype_inner": null, | ||
156 | "name": "Data for Fig. 3 of J. Phys. A 51 (2018) 195001", | 154 | "name": "Data for Fig. 3 of J. Phys. A 51 (2018) 195001", | ||
157 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 155 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
158 | "position": 3, | 156 | "position": 3, | ||
159 | "resource_type": null, | 157 | "resource_type": null, | ||
n | 160 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
161 | "size": 11274, | 158 | "size": 11274, | ||
162 | "state": "active", | 159 | "state": "active", | ||
163 | "url": | 160 | "url": | ||
164 | /ea15fe66-b292-4e90-9a0a-d38ef306cf13/download/fermivelocity_2_3.zip", | 161 | /ea15fe66-b292-4e90-9a0a-d38ef306cf13/download/fermivelocity_2_3.zip", | ||
165 | "url_type": "" | 162 | "url_type": "" | ||
166 | }, | 163 | }, | ||
167 | { | 164 | { | ||
168 | "cache_last_updated": null, | 165 | "cache_last_updated": null, | ||
169 | "cache_url": null, | 166 | "cache_url": null, | ||
170 | "created": "2019-03-18T13:33:04.047214", | 167 | "created": "2019-03-18T13:33:04.047214", | ||
n | 171 | "datastore_active": false, | n | ||
172 | "description": "Entropy obtained from numerical solution of the | 168 | "description": "Entropy obtained from numerical solution of the | ||
173 | TBA equations (3.4) for $p_0=2+1/3$ as a function of the magnetic | 169 | TBA equations (3.4) for $p_0=2+1/3$ as a function of the magnetic | ||
174 | field $H$ for different temperatures. For magnetic fields large | 170 | field $H$ for different temperatures. For magnetic fields large | ||
175 | compared to the kink mass, $zH\\gg M_0$, the entropy approaches the | 171 | compared to the kink mass, $zH\\gg M_0$, the entropy approaches the | ||
176 | expected analytical value (3.20) for a field theory with a free | 172 | expected analytical value (3.20) for a field theory with a free | ||
177 | bosonic and a $Z_{N_f}$ parafermion sector propagating with velocities | 173 | bosonic and a $Z_{N_f}$ parafermion sector propagating with velocities | ||
178 | $v_{\\text{Kink}}$ and $v_{pf}$, respectively (full red line). For | 174 | $v_{\\text{Kink}}$ and $v_{pf}$, respectively (full red line). For | ||
179 | magnetic fields $zH<M_0$ and temperature $T\\ll M_0$ the entropy is | 175 | magnetic fields $zH<M_0$ and temperature $T\\ll M_0$ the entropy is | ||
180 | that of a dilute gas of non-interacting quasi-particles with | 176 | that of a dilute gas of non-interacting quasi-particles with | ||
181 | degenerate internal degree of freedom due to the anyons (dashed red | 177 | degenerate internal degree of freedom due to the anyons (dashed red | ||
182 | line).", | 178 | line).", | ||
183 | "format": "ZIP", | 179 | "format": "ZIP", | ||
184 | "hash": "", | 180 | "hash": "", | ||
185 | "id": "4b505f59-d495-49e4-a424-1e8231c48aaf", | 181 | "id": "4b505f59-d495-49e4-a424-1e8231c48aaf", | ||
186 | "last_modified": "2019-03-18T13:33:03.985964", | 182 | "last_modified": "2019-03-18T13:33:03.985964", | ||
n | 187 | "metadata_modified": "2021-10-14T10:16:07.734377", | n | 183 | "metadata_modified": "2023-08-04T08:46:49.053651", |
188 | "mimetype": "application/zip", | 184 | "mimetype": "application/zip", | ||
189 | "mimetype_inner": null, | 185 | "mimetype_inner": null, | ||
190 | "name": "Data for Fig. 4(a) of J. Phys. A 51 (2018) 195001", | 186 | "name": "Data for Fig. 4(a) of J. Phys. A 51 (2018) 195001", | ||
191 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 187 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
192 | "position": 4, | 188 | "position": 4, | ||
193 | "resource_type": null, | 189 | "resource_type": null, | ||
n | 194 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
195 | "size": 105767, | 190 | "size": 105767, | ||
196 | "state": "active", | 191 | "state": "active", | ||
197 | "url": | 192 | "url": | ||
198 | source/4b505f59-d495-49e4-a424-1e8231c48aaf/download/entropy_2_3.zip", | 193 | source/4b505f59-d495-49e4-a424-1e8231c48aaf/download/entropy_2_3.zip", | ||
199 | "url_type": "" | 194 | "url_type": "" | ||
200 | }, | 195 | }, | ||
201 | { | 196 | { | ||
202 | "cache_last_updated": null, | 197 | "cache_last_updated": null, | ||
203 | "cache_url": null, | 198 | "cache_url": null, | ||
204 | "created": "2019-03-18T13:33:51.427188", | 199 | "created": "2019-03-18T13:33:51.427188", | ||
n | 205 | "datastore_active": false, | n | ||
206 | "description": "Entropy obtained from numerical solution of the | 200 | "description": "Entropy obtained from numerical solution of the | ||
207 | TBA equations (3.4) for $p_0=3+1/3$ as a function of the magnetic | 201 | TBA equations (3.4) for $p_0=3+1/3$ as a function of the magnetic | ||
208 | field $H$ for different temperatures. For magnetic fields large | 202 | field $H$ for different temperatures. For magnetic fields large | ||
209 | compared to the kink mass, $zH\\gg M_0$, the entropy approaches the | 203 | compared to the kink mass, $zH\\gg M_0$, the entropy approaches the | ||
210 | expected analytical value (3.20) for a field theory with a free | 204 | expected analytical value (3.20) for a field theory with a free | ||
211 | bosonic and a $Z_{N_f}$ parafermion sector propagating with velocities | 205 | bosonic and a $Z_{N_f}$ parafermion sector propagating with velocities | ||
212 | $v_{\\text{Kink}}$ and $v_{pf}$, respectively (full red line). For | 206 | $v_{\\text{Kink}}$ and $v_{pf}$, respectively (full red line). For | ||
213 | magnetic fields $zH<M_0$ and temperature $T\\ll M_0$ the entropy is | 207 | magnetic fields $zH<M_0$ and temperature $T\\ll M_0$ the entropy is | ||
214 | that of a dilute gas of non-interacting quasi-particles with | 208 | that of a dilute gas of non-interacting quasi-particles with | ||
215 | degenerate internal degree of freedom due to the anyons (dashed red | 209 | degenerate internal degree of freedom due to the anyons (dashed red | ||
216 | line).", | 210 | line).", | ||
217 | "format": "ZIP", | 211 | "format": "ZIP", | ||
218 | "hash": "", | 212 | "hash": "", | ||
219 | "id": "103b2cb0-722e-4abd-b4ef-419448162ffc", | 213 | "id": "103b2cb0-722e-4abd-b4ef-419448162ffc", | ||
220 | "last_modified": "2019-03-18T13:33:51.381259", | 214 | "last_modified": "2019-03-18T13:33:51.381259", | ||
n | 221 | "metadata_modified": "2021-10-14T10:16:07.735601", | n | 215 | "metadata_modified": "2023-08-04T08:46:49.053768", |
222 | "mimetype": "application/zip", | 216 | "mimetype": "application/zip", | ||
223 | "mimetype_inner": null, | 217 | "mimetype_inner": null, | ||
224 | "name": "Data for Fig. 4(b) of J. Phys. A 51 (2018) 195001", | 218 | "name": "Data for Fig. 4(b) of J. Phys. A 51 (2018) 195001", | ||
225 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 219 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
226 | "position": 5, | 220 | "position": 5, | ||
227 | "resource_type": null, | 221 | "resource_type": null, | ||
n | 228 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
229 | "size": 104432, | 222 | "size": 104432, | ||
230 | "state": "active", | 223 | "state": "active", | ||
231 | "url": | 224 | "url": | ||
232 | source/103b2cb0-722e-4abd-b4ef-419448162ffc/download/entropy_3_3.zip", | 225 | source/103b2cb0-722e-4abd-b4ef-419448162ffc/download/entropy_3_3.zip", | ||
233 | "url_type": "" | 226 | "url_type": "" | ||
234 | }, | 227 | }, | ||
235 | { | 228 | { | ||
236 | "cache_last_updated": null, | 229 | "cache_last_updated": null, | ||
237 | "cache_url": null, | 230 | "cache_url": null, | ||
238 | "created": "2019-03-18T13:35:39.404285", | 231 | "created": "2019-03-18T13:35:39.404285", | ||
n | 239 | "datastore_active": false, | n | ||
240 | "description": "Contribution of the $SU(2)_{N_f}$ anyons to the | 232 | "description": "Contribution of the $SU(2)_{N_f}$ anyons to the | ||
241 | low temperature properties of the model (2.1) for $\\nu=3$ (inset for | 233 | low temperature properties of the model (2.1) for $\\nu=3$ (inset for | ||
242 | $\\nu=4$): using the criteria described in the main text the parameter | 234 | $\\nu=4$): using the criteria described in the main text the parameter | ||
243 | regions identified using analytical arguments for $T\\to0$ before are | 235 | regions identified using analytical arguments for $T\\to0$ before are | ||
244 | located in the phase diagram (the actual location of the boundaries is | 236 | located in the phase diagram (the actual location of the boundaries is | ||
245 | based on numerical data for $N_f=2$). For small magnetic fields a gas | 237 | based on numerical data for $N_f=2$). For small magnetic fields a gas | ||
246 | of non-interacting quasi-particles with the anyon as an internal zero | 238 | of non-interacting quasi-particles with the anyon as an internal zero | ||
247 | energy degree of freedom bound to them is realized. Here the dashed | 239 | energy degree of freedom bound to them is realized. Here the dashed | ||
248 | line indicates $\\epsilon_{j_0}(0)=\\epsilon_{N_f}(0)$, i.e. the | 240 | line indicates $\\epsilon_{j_0}(0)=\\epsilon_{N_f}(0)$, i.e. the | ||
249 | location of the crossover between regions where the lowest energy | 241 | location of the crossover between regions where the lowest energy | ||
250 | breathers, $j_1=N_f$, (region I) or kinks (region II) dominate the | 242 | breathers, $j_1=N_f$, (region I) or kinks (region II) dominate the | ||
251 | free energy. In region III the presence of thermally activated kinks | 243 | free energy. In region III the presence of thermally activated kinks | ||
252 | with a small but finite density lifts the degeneracy of the zero | 244 | with a small but finite density lifts the degeneracy of the zero | ||
253 | modes. As argued in Ref.~\\cite{Tsve14a,JKLRT17} this results in the | 245 | modes. As argued in Ref.~\\cite{Tsve14a,JKLRT17} this results in the | ||
254 | formation of a collective state of the anyons described by $Z_{N_f}$ | 246 | formation of a collective state of the anyons described by $Z_{N_f}$ | ||
255 | parafermions. \r\n %\r\n For fields $zH>M_0$ the kinks condense and | 247 | parafermions. \r\n %\r\n For fields $zH>M_0$ the kinks condense and | ||
256 | the low energy behaviour of the model is determined by the | 248 | the low energy behaviour of the model is determined by the | ||
257 | corresponding $U(1)$ bosonic mode and the parafermion collective modes | 249 | corresponding $U(1)$ bosonic mode and the parafermion collective modes | ||
258 | of the non-Abelian $SU(2)_{N_f}$ spin-$\\frac12$ anyons with | 250 | of the non-Abelian $SU(2)_{N_f}$ spin-$\\frac12$ anyons with | ||
259 | ferromagnetic interaction. For $zH\\gg M_0$ the Fermi velocities of | 251 | ferromagnetic interaction. For $zH\\gg M_0$ the Fermi velocities of | ||
260 | kinks and parafermions degenerate yielding a $SU(2)$ WZNW model at | 252 | kinks and parafermions degenerate yielding a $SU(2)$ WZNW model at | ||
261 | level $N_f$ for the effective description of the model.", | 253 | level $N_f$ for the effective description of the model.", | ||
262 | "format": "ZIP", | 254 | "format": "ZIP", | ||
263 | "hash": "", | 255 | "hash": "", | ||
264 | "id": "7b3f5e80-4671-4853-a1d5-64e968441e5d", | 256 | "id": "7b3f5e80-4671-4853-a1d5-64e968441e5d", | ||
265 | "last_modified": "2019-03-18T13:35:39.349314", | 257 | "last_modified": "2019-03-18T13:35:39.349314", | ||
n | 266 | "metadata_modified": "2021-10-14T10:16:07.736809", | n | 258 | "metadata_modified": "2023-08-04T08:46:49.053872", |
267 | "mimetype": "application/zip", | 259 | "mimetype": "application/zip", | ||
268 | "mimetype_inner": null, | 260 | "mimetype_inner": null, | ||
269 | "name": "Data for Fig. 5 of J. Phys. A 51 (2018) 195001", | 261 | "name": "Data for Fig. 5 of J. Phys. A 51 (2018) 195001", | ||
270 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 262 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
271 | "position": 6, | 263 | "position": 6, | ||
272 | "resource_type": null, | 264 | "resource_type": null, | ||
n | 273 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
274 | "size": 57861, | 265 | "size": 57861, | ||
275 | "state": "active", | 266 | "state": "active", | ||
276 | "url": | 267 | "url": | ||
277 | ource/7b3f5e80-4671-4853-a1d5-64e968441e5d/download/phasediagram.zip", | 268 | ource/7b3f5e80-4671-4853-a1d5-64e968441e5d/download/phasediagram.zip", | ||
278 | "url_type": "" | 269 | "url_type": "" | ||
279 | }, | 270 | }, | ||
280 | { | 271 | { | ||
281 | "cache_last_updated": null, | 272 | "cache_last_updated": null, | ||
282 | "cache_url": null, | 273 | "cache_url": null, | ||
283 | "created": "2019-03-18T13:35:11.416730", | 274 | "created": "2019-03-18T13:35:11.416730", | ||
n | 284 | "datastore_active": false, | n | ||
285 | "description": "This Mathematica notebook was used for all the | 275 | "description": "This Mathematica notebook was used for all the | ||
286 | numerical computations for the \"Signatures of non-Abelian anyons in | 276 | numerical computations for the \"Signatures of non-Abelian anyons in | ||
287 | the thermodynamics of an interacting fermion model\" paper.\r\n\r\nHow | 277 | the thermodynamics of an interacting fermion model\" paper.\r\n\r\nHow | ||
288 | to use it:\r\n1) Set an anisotropy parameter.\r\n2) Set the range and | 278 | to use it:\r\n1) Set an anisotropy parameter.\r\n2) Set the range and | ||
289 | discretization of the rapidity \\lambda.\r\n3) Run the \"Compute | 279 | discretization of the rapidity \\lambda.\r\n3) Run the \"Compute | ||
290 | string\" part. It computes all the allowed strings for the given | 280 | string\" part. It computes all the allowed strings for the given | ||
291 | anisotropy parameter.\r\n4) Run \"Define kernels\". This defines all | 281 | anisotropy parameter.\r\n4) Run \"Define kernels\". This defines all | ||
292 | the kernels of the integral equations for the given anisotropy | 282 | the kernels of the integral equations for the given anisotropy | ||
293 | parameter.\r\n5) Run \"Numerical Fourier transformation and useful | 283 | parameter.\r\n5) Run \"Numerical Fourier transformation and useful | ||
294 | functions\". This defines all the necessary functions for fast Fourier | 284 | functions\". This defines all the necessary functions for fast Fourier | ||
295 | transformations.\r\n6) Use the part \"Solving integral equations by | 285 | transformations.\r\n6) Use the part \"Solving integral equations by | ||
296 | iteration\" to define functions that solve the integral equations of | 286 | iteration\" to define functions that solve the integral equations of | ||
297 | the dressed energies. These differ depending on whether the derivative | 287 | the dressed energies. These differ depending on whether the derivative | ||
298 | with respect to the external field or the temperature are | 288 | with respect to the external field or the temperature are | ||
299 | needed.\r\n7) The remaining parts are used to compute specific | 289 | needed.\r\n7) The remaining parts are used to compute specific | ||
300 | physical quantities of the perturbed SU(2)_Nf WZNW model.\r\n8) Part | 290 | physical quantities of the perturbed SU(2)_Nf WZNW model.\r\n8) Part | ||
301 | \"High temperature asymptotics of SU(2) spin chain\" was used to check | 291 | \"High temperature asymptotics of SU(2) spin chain\" was used to check | ||
302 | whether the correct high-temperature behavior of the entropy is found. | 292 | whether the correct high-temperature behavior of the entropy is found. | ||
303 | This is a good test to check whether the strings and kernels are | 293 | This is a good test to check whether the strings and kernels are | ||
304 | correct.\r\n", | 294 | correct.\r\n", | ||
305 | "format": "ZIP", | 295 | "format": "ZIP", | ||
306 | "hash": "", | 296 | "hash": "", | ||
307 | "id": "25c99bbb-2035-4763-a0e1-2cc9168cf1b6", | 297 | "id": "25c99bbb-2035-4763-a0e1-2cc9168cf1b6", | ||
308 | "last_modified": "2019-03-18T13:35:11.365316", | 298 | "last_modified": "2019-03-18T13:35:11.365316", | ||
n | 309 | "metadata_modified": "2021-10-14T10:16:07.738161", | n | 299 | "metadata_modified": "2023-08-04T08:46:49.053973", |
310 | "mimetype": "application/zip", | 300 | "mimetype": "application/zip", | ||
311 | "mimetype_inner": null, | 301 | "mimetype_inner": null, | ||
312 | "name": "Mathematica.zip", | 302 | "name": "Mathematica.zip", | ||
313 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | 303 | "package_id": "bd0b2dee-a2e6-461e-a5d5-6342c9f004c8", | ||
314 | "position": 7, | 304 | "position": 7, | ||
315 | "resource_type": null, | 305 | "resource_type": null, | ||
n | 316 | "revision_id": "70f5197f-ac4f-4790-ab26-0a096fe2b3f6", | n | ||
317 | "size": 517533, | 306 | "size": 517533, | ||
318 | "state": "active", | 307 | "state": "active", | ||
319 | "url": | 308 | "url": | ||
320 | source/25c99bbb-2035-4763-a0e1-2cc9168cf1b6/download/mathematica.zip", | 309 | source/25c99bbb-2035-4763-a0e1-2cc9168cf1b6/download/mathematica.zip", | ||
321 | "url_type": "" | 310 | "url_type": "" | ||
322 | } | 311 | } | ||
323 | ], | 312 | ], | ||
t | t | 313 | "services_used_list": "", | ||
324 | "source_metadata_created": "2019-03-18T13:30:05.523307", | 314 | "source_metadata_created": "2019-03-18T13:30:05.523307", | ||
325 | "source_metadata_modified": "2019-06-27T09:38:28.599414", | 315 | "source_metadata_modified": "2019-06-27T09:38:28.599414", | ||
326 | "state": "active", | 316 | "state": "active", | ||
327 | "tags": [ | 317 | "tags": [ | ||
328 | { | 318 | { | ||
329 | "display_name": "Bethe ansatz", | 319 | "display_name": "Bethe ansatz", | ||
330 | "id": "236a2df8-c82e-46cb-9c3a-797353c800c3", | 320 | "id": "236a2df8-c82e-46cb-9c3a-797353c800c3", | ||
331 | "name": "Bethe ansatz", | 321 | "name": "Bethe ansatz", | ||
332 | "state": "active", | 322 | "state": "active", | ||
333 | "vocabulary_id": null | 323 | "vocabulary_id": null | ||
334 | }, | 324 | }, | ||
335 | { | 325 | { | ||
336 | "display_name": "non-Abelian anyons", | 326 | "display_name": "non-Abelian anyons", | ||
337 | "id": "e19ab70a-13d9-441f-88c2-acde669ff639", | 327 | "id": "e19ab70a-13d9-441f-88c2-acde669ff639", | ||
338 | "name": "non-Abelian anyons", | 328 | "name": "non-Abelian anyons", | ||
339 | "state": "active", | 329 | "state": "active", | ||
340 | "vocabulary_id": null | 330 | "vocabulary_id": null | ||
341 | } | 331 | } | ||
342 | ], | 332 | ], | ||
343 | "terms_of_usage": "Yes", | 333 | "terms_of_usage": "Yes", | ||
344 | "title": "Signatures of non-Abelian anyons in the thermodynamics of | 334 | "title": "Signatures of non-Abelian anyons in the thermodynamics of | ||
345 | an interacting fermion model", | 335 | an interacting fermion model", | ||
346 | "type": "vdataset", | 336 | "type": "vdataset", | ||
347 | "url": | 337 | "url": | ||
348 | /data.uni-hannover.de/dataset/su2k-non-abelian-anyons-thermodynamics", | 338 | /data.uni-hannover.de/dataset/su2k-non-abelian-anyons-thermodynamics", | ||
349 | "version": "" | 339 | "version": "" | ||
350 | } | 340 | } |