Changes
On November 28, 2024 at 1:15:42 PM UTC, admin:
-
Changed value of field
extra_authors
to[{'extra_author': 'Rädle, Matthias', 'familyName': 'Rädle', 'givenName': 'Matthias', 'orcid': ''}, {'extra_author': 'Karbstein, Heike P.', 'familyName': 'Karbstein', 'givenName': 'Heike P.', 'orcid': ''}]
in Influence of refractive index differences on the signal strength for raman-spectroscopic measurements of double emulsion droplets
f | 1 | { | f | 1 | { |
2 | "author": "Hufnagel, Thomas", | 2 | "author": "Hufnagel, Thomas", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
n | n | 4 | "citation": [], | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 5 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1344", | 6 | "doi": "10.35097/1344", | ||
6 | "doi_date_published": "2023", | 7 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 8 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 9 | "doi_status": "True", | ||
9 | "extra_authors": [ | 10 | "extra_authors": [ | ||
10 | { | 11 | { | ||
11 | "extra_author": "R\u00e4dle, Matthias", | 12 | "extra_author": "R\u00e4dle, Matthias", | ||
n | n | 13 | "familyName": "R\u00e4dle", | ||
14 | "givenName": "Matthias", | ||||
12 | "orcid": "" | 15 | "orcid": "" | ||
13 | }, | 16 | }, | ||
14 | { | 17 | { | ||
15 | "extra_author": "Karbstein, Heike P.", | 18 | "extra_author": "Karbstein, Heike P.", | ||
n | n | 19 | "familyName": "Karbstein", | ||
20 | "givenName": "Heike P.", | ||||
16 | "orcid": "" | 21 | "orcid": "" | ||
17 | } | 22 | } | ||
18 | ], | 23 | ], | ||
n | n | 24 | "familyName": "Hufnagel", | ||
25 | "givenName": "Thomas", | ||||
19 | "groups": [], | 26 | "groups": [], | ||
20 | "id": "2bf233b4-a5cb-4c76-9650-426510d3f609", | 27 | "id": "2bf233b4-a5cb-4c76-9650-426510d3f609", | ||
21 | "isopen": false, | 28 | "isopen": false, | ||
22 | "license_id": "CC BY-SA 4.0 Attribution-ShareAlike", | 29 | "license_id": "CC BY-SA 4.0 Attribution-ShareAlike", | ||
23 | "license_title": "CC BY-SA 4.0 Attribution-ShareAlike", | 30 | "license_title": "CC BY-SA 4.0 Attribution-ShareAlike", | ||
24 | "metadata_created": "2023-08-04T08:50:34.758518", | 31 | "metadata_created": "2023-08-04T08:50:34.758518", | ||
t | 25 | "metadata_modified": "2023-08-04T09:29:05.713050", | t | 32 | "metadata_modified": "2024-11-28T13:15:42.127925", |
26 | "name": "rdr-doi-10-35097-1344", | 33 | "name": "rdr-doi-10-35097-1344", | ||
27 | "notes": "Abstract: Double emulsions show great potential for | 34 | "notes": "Abstract: Double emulsions show great potential for | ||
28 | encapsulating active substances and protecting them against external | 35 | encapsulating active substances and protecting them against external | ||
29 | influences. However, due to their complex structure, double emulsions | 36 | influences. However, due to their complex structure, double emulsions | ||
30 | tend to become unstable during storage. Research on double emulsions | 37 | tend to become unstable during storage. Research on double emulsions | ||
31 | therefore focuses on maintaining their microstructure during their | 38 | therefore focuses on maintaining their microstructure during their | ||
32 | shelf life. Optical measurement methods such as Raman spectroscopy | 39 | shelf life. Optical measurement methods such as Raman spectroscopy | ||
33 | have hardly been used to date to analyze the microstructure of double | 40 | have hardly been used to date to analyze the microstructure of double | ||
34 | emulsions mainly due to multiple scattering effects. This study | 41 | emulsions mainly due to multiple scattering effects. This study | ||
35 | concentrates on reducing scattering effects by matching the refractive | 42 | concentrates on reducing scattering effects by matching the refractive | ||
36 | indices of the individual emulsion phases. \r\nDouble emulsions with | 43 | indices of the individual emulsion phases. \r\nDouble emulsions with | ||
37 | adapted refractive indices are investigated using Raman spectroscopy. | 44 | adapted refractive indices are investigated using Raman spectroscopy. | ||
38 | The refractive indices of the inner and outer water phases are varied, | 45 | The refractive indices of the inner and outer water phases are varied, | ||
39 | while the refractive index of the oil phase is kept constant. In order | 46 | while the refractive index of the oil phase is kept constant. In order | ||
40 | to evaluate the signal of the inner water phase the same amount of | 47 | to evaluate the signal of the inner water phase the same amount of | ||
41 | tracer is present in all inner phases. \r\nFor individual phase | 48 | tracer is present in all inner phases. \r\nFor individual phase | ||
42 | boundaries of single droplets, the refractive index matching plays a | 49 | boundaries of single droplets, the refractive index matching plays a | ||
43 | minor role. However, if there are many droplets with correspondingly | 50 | minor role. However, if there are many droplets with correspondingly | ||
44 | numerous phase boundaries, which leads to multiple scattering during | 51 | numerous phase boundaries, which leads to multiple scattering during | ||
45 | the measurement, the matching has a significant influence on the | 52 | the measurement, the matching has a significant influence on the | ||
46 | signal strength of the inner phase. \r\nWhen measuring double | 53 | signal strength of the inner phase. \r\nWhen measuring double | ||
47 | emulsions, the phases should always be matched if possible, as this | 54 | emulsions, the phases should always be matched if possible, as this | ||
48 | results in higher signals. This in turn improves the sensitivity of | 55 | results in higher signals. This in turn improves the sensitivity of | ||
49 | the measurement.\r\nTechnicalRemarks: There are seven different | 56 | the measurement.\r\nTechnicalRemarks: There are seven different | ||
50 | files:\r\n1-5: \"Auswertung_16%AN\" ... \"Auswertung_61%AN\"\r\nThose | 57 | files:\r\n1-5: \"Auswertung_16%AN\" ... \"Auswertung_61%AN\"\r\nThose | ||
51 | files contain all spectroscopic raw data from the experiments and the | 58 | files contain all spectroscopic raw data from the experiments and the | ||
52 | baseline correction for the ammonium nitrate peak for each | 59 | baseline correction for the ammonium nitrate peak for each | ||
53 | measurement\r\nTab \"Rohdatenpython\": A phython programm imports the | 60 | measurement\r\nTab \"Rohdatenpython\": A phython programm imports the | ||
54 | spectroscopic data from txt.files to excel (simple copy&paste)\r\nTab | 61 | spectroscopic data from txt.files to excel (simple copy&paste)\r\nTab | ||
55 | \"Rohdaten\": Data are copied from Rohdatenphyton to this tab. | 62 | \"Rohdaten\": Data are copied from Rohdatenphyton to this tab. | ||
56 | Negative wavenumbers (-88 till -1) are deleted\r\nTab \"Auswertung | 63 | Negative wavenumbers (-88 till -1) are deleted\r\nTab \"Auswertung | ||
57 | 1.2\": Integral of each ammonium nitrate peak is caluclated \r\nTab | 64 | 1.2\": Integral of each ammonium nitrate peak is caluclated \r\nTab | ||
58 | \"Auswertung 2\": Summary of all peaks including x-y-diagramm, which | 65 | \"Auswertung 2\": Summary of all peaks including x-y-diagramm, which | ||
59 | shows the linearity between the measurements\r\n6: | 66 | shows the linearity between the measurements\r\n6: | ||
60 | \"Gesamtauswertung\":\r\nTab \"Diagramm_W1\": Diagramm of | 67 | \"Gesamtauswertung\":\r\nTab \"Diagramm_W1\": Diagramm of | ||
61 | W1-Matching\r\nTab \"Diagramm_W2\": Diagramm of W2-Matching\r\nTab | 68 | W1-Matching\r\nTab \"Diagramm_W2\": Diagramm of W2-Matching\r\nTab | ||
62 | \"Gesamt\": Summary of the measured data (Tab 16%AN ... 61%AN), | 69 | \"Gesamt\": Summary of the measured data (Tab 16%AN ... 61%AN), | ||
63 | refractive indizes, linearity of glycerol. It is mentioned, which data | 70 | refractive indizes, linearity of glycerol. It is mentioned, which data | ||
64 | is used for which figure/table\r\nTab \"Diagramm_Residuen_W2\": | 71 | is used for which figure/table\r\nTab \"Diagramm_Residuen_W2\": | ||
65 | Residuen as function of W2-Matching\r\nTab \"Diagramm_Residuen_W1\": | 72 | Residuen as function of W2-Matching\r\nTab \"Diagramm_Residuen_W1\": | ||
66 | Residuen as function of W1-Matching\r\nTab \"Multiple lineare | 73 | Residuen as function of W1-Matching\r\nTab \"Multiple lineare | ||
67 | Regression\": Calculation of the mlr and residues\r\nTab \"16%AN\" ... | 74 | Regression\": Calculation of the mlr and residues\r\nTab \"16%AN\" ... | ||
68 | \"61%AN\": Copy of the tabs \"Auswertung2\"\r\n7. \"Spectra_Fig1\": | 75 | \"61%AN\": Copy of the tabs \"Auswertung2\"\r\n7. \"Spectra_Fig1\": | ||
69 | All spectroscopic raw data and diagrams regarding the substance | 76 | All spectroscopic raw data and diagrams regarding the substance | ||
70 | system", | 77 | system", | ||
71 | "num_resources": 0, | 78 | "num_resources": 0, | ||
72 | "num_tags": 8, | 79 | "num_tags": 8, | ||
73 | "orcid": "", | 80 | "orcid": "", | ||
74 | "organization": { | 81 | "organization": { | ||
75 | "approval_status": "approved", | 82 | "approval_status": "approved", | ||
76 | "created": "2023-01-12T13:30:23.238233", | 83 | "created": "2023-01-12T13:30:23.238233", | ||
77 | "description": "RADAR (Research Data Repository) is a | 84 | "description": "RADAR (Research Data Repository) is a | ||
78 | cross-disciplinary repository for archiving and publishing research | 85 | cross-disciplinary repository for archiving and publishing research | ||
79 | data from completed scientific studies and projects. The focus is on | 86 | data from completed scientific studies and projects. The focus is on | ||
80 | research data from subjects that do not yet have their own | 87 | research data from subjects that do not yet have their own | ||
81 | discipline-specific infrastructures for research data management. ", | 88 | discipline-specific infrastructures for research data management. ", | ||
82 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 89 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
83 | "image_url": "radar-logo.svg", | 90 | "image_url": "radar-logo.svg", | ||
84 | "is_organization": true, | 91 | "is_organization": true, | ||
85 | "name": "radar", | 92 | "name": "radar", | ||
86 | "state": "active", | 93 | "state": "active", | ||
87 | "title": "RADAR", | 94 | "title": "RADAR", | ||
88 | "type": "organization" | 95 | "type": "organization" | ||
89 | }, | 96 | }, | ||
90 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 97 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
91 | "private": false, | 98 | "private": false, | ||
92 | "production_year": "2022", | 99 | "production_year": "2022", | ||
93 | "publication_year": "2023", | 100 | "publication_year": "2023", | ||
94 | "publishers": [ | 101 | "publishers": [ | ||
95 | { | 102 | { | ||
96 | "publisher": "Karlsruhe Institute of Technology" | 103 | "publisher": "Karlsruhe Institute of Technology" | ||
97 | } | 104 | } | ||
98 | ], | 105 | ], | ||
99 | "relationships_as_object": [], | 106 | "relationships_as_object": [], | ||
100 | "relationships_as_subject": [], | 107 | "relationships_as_subject": [], | ||
101 | "repository_name": "RADAR (Research Data Repository)", | 108 | "repository_name": "RADAR (Research Data Repository)", | ||
102 | "resources": [], | 109 | "resources": [], | ||
103 | "services_used_list": "", | 110 | "services_used_list": "", | ||
104 | "source_metadata_created": "2023", | 111 | "source_metadata_created": "2023", | ||
105 | "source_metadata_modified": "", | 112 | "source_metadata_modified": "", | ||
106 | "state": "active", | 113 | "state": "active", | ||
107 | "subject_areas": [ | 114 | "subject_areas": [ | ||
108 | { | 115 | { | ||
109 | "subject_area_additional": "", | 116 | "subject_area_additional": "", | ||
110 | "subject_area_name": "Engineering" | 117 | "subject_area_name": "Engineering" | ||
111 | } | 118 | } | ||
112 | ], | 119 | ], | ||
113 | "tags": [ | 120 | "tags": [ | ||
114 | { | 121 | { | ||
115 | "display_name": "Double emulsion", | 122 | "display_name": "Double emulsion", | ||
116 | "id": "0d37c4bb-94c2-48bf-a63d-9d0cc739e609", | 123 | "id": "0d37c4bb-94c2-48bf-a63d-9d0cc739e609", | ||
117 | "name": "Double emulsion", | 124 | "name": "Double emulsion", | ||
118 | "state": "active", | 125 | "state": "active", | ||
119 | "vocabulary_id": null | 126 | "vocabulary_id": null | ||
120 | }, | 127 | }, | ||
121 | { | 128 | { | ||
122 | "display_name": "Fresnels formula", | 129 | "display_name": "Fresnels formula", | ||
123 | "id": "e59bcef5-7c55-4302-92bd-1672493c6ed0", | 130 | "id": "e59bcef5-7c55-4302-92bd-1672493c6ed0", | ||
124 | "name": "Fresnels formula", | 131 | "name": "Fresnels formula", | ||
125 | "state": "active", | 132 | "state": "active", | ||
126 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
127 | }, | 134 | }, | ||
128 | { | 135 | { | ||
129 | "display_name": "Raman spectroscopy", | 136 | "display_name": "Raman spectroscopy", | ||
130 | "id": "9ccbabc7-9322-49f3-93eb-279cb61152f2", | 137 | "id": "9ccbabc7-9322-49f3-93eb-279cb61152f2", | ||
131 | "name": "Raman spectroscopy", | 138 | "name": "Raman spectroscopy", | ||
132 | "state": "active", | 139 | "state": "active", | ||
133 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
134 | }, | 141 | }, | ||
135 | { | 142 | { | ||
136 | "display_name": "Refractive index matching", | 143 | "display_name": "Refractive index matching", | ||
137 | "id": "8a578d32-c960-4034-86b0-7e7f28cd2ddd", | 144 | "id": "8a578d32-c960-4034-86b0-7e7f28cd2ddd", | ||
138 | "name": "Refractive index matching", | 145 | "name": "Refractive index matching", | ||
139 | "state": "active", | 146 | "state": "active", | ||
140 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
141 | }, | 148 | }, | ||
142 | { | 149 | { | ||
143 | "display_name": "glass capillary device", | 150 | "display_name": "glass capillary device", | ||
144 | "id": "b02289ef-c7e2-40c8-afa0-8b56497105ff", | 151 | "id": "b02289ef-c7e2-40c8-afa0-8b56497105ff", | ||
145 | "name": "glass capillary device", | 152 | "name": "glass capillary device", | ||
146 | "state": "active", | 153 | "state": "active", | ||
147 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
148 | }, | 155 | }, | ||
149 | { | 156 | { | ||
150 | "display_name": "microfluidic", | 157 | "display_name": "microfluidic", | ||
151 | "id": "921426e7-11a3-4586-93d4-4c3984ae98b7", | 158 | "id": "921426e7-11a3-4586-93d4-4c3984ae98b7", | ||
152 | "name": "microfluidic", | 159 | "name": "microfluidic", | ||
153 | "state": "active", | 160 | "state": "active", | ||
154 | "vocabulary_id": null | 161 | "vocabulary_id": null | ||
155 | }, | 162 | }, | ||
156 | { | 163 | { | ||
157 | "display_name": "multiple linear regression", | 164 | "display_name": "multiple linear regression", | ||
158 | "id": "174b6ac1-5ffe-4e0d-b5dd-e66cf0cc2303", | 165 | "id": "174b6ac1-5ffe-4e0d-b5dd-e66cf0cc2303", | ||
159 | "name": "multiple linear regression", | 166 | "name": "multiple linear regression", | ||
160 | "state": "active", | 167 | "state": "active", | ||
161 | "vocabulary_id": null | 168 | "vocabulary_id": null | ||
162 | }, | 169 | }, | ||
163 | { | 170 | { | ||
164 | "display_name": "multiple scattering", | 171 | "display_name": "multiple scattering", | ||
165 | "id": "c58b032d-487f-47c8-9102-201e090c7012", | 172 | "id": "c58b032d-487f-47c8-9102-201e090c7012", | ||
166 | "name": "multiple scattering", | 173 | "name": "multiple scattering", | ||
167 | "state": "active", | 174 | "state": "active", | ||
168 | "vocabulary_id": null | 175 | "vocabulary_id": null | ||
169 | } | 176 | } | ||
170 | ], | 177 | ], | ||
171 | "title": "Influence of refractive index differences on the signal | 178 | "title": "Influence of refractive index differences on the signal | ||
172 | strength for raman-spectroscopic measurements of double emulsion | 179 | strength for raman-spectroscopic measurements of double emulsion | ||
173 | droplets", | 180 | droplets", | ||
174 | "type": "vdataset", | 181 | "type": "vdataset", | ||
175 | "url": "https://doi.org/10.35097/1344" | 182 | "url": "https://doi.org/10.35097/1344" | ||
176 | } | 183 | } |