Changes
On August 4, 2023 at 8:53:19 AM UTC, admin:
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Kaiser, Frieder", | 2 | "author": "Kaiser, Frieder", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1173", | 5 | "doi": "10.35097/1173", | ||
6 | "doi_date_published": "2023", | 6 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "groups": [], | 9 | "groups": [], | ||
10 | "id": "aaaabcfe-138f-45c2-9075-0f831fa8ff99", | 10 | "id": "aaaabcfe-138f-45c2-9075-0f831fa8ff99", | ||
11 | "isopen": false, | 11 | "isopen": false, | ||
12 | "license_id": "CC BY-NC-ND 4.0 Attribution-NonCommercial-NoDerivs", | 12 | "license_id": "CC BY-NC-ND 4.0 Attribution-NonCommercial-NoDerivs", | ||
13 | "license_title": "CC BY-NC-ND 4.0 | 13 | "license_title": "CC BY-NC-ND 4.0 | ||
14 | Attribution-NonCommercial-NoDerivs", | 14 | Attribution-NonCommercial-NoDerivs", | ||
15 | "metadata_created": "2023-08-04T08:50:12.840279", | 15 | "metadata_created": "2023-08-04T08:50:12.840279", | ||
t | 16 | "metadata_modified": "2023-08-04T08:51:48.777442", | t | 16 | "metadata_modified": "2023-08-04T08:53:19.577276", |
17 | "name": "rdr-doi-10-35097-1173", | 17 | "name": "rdr-doi-10-35097-1173", | ||
18 | "notes": "Abstract: An infinite cylinder containing a fluid in solid | 18 | "notes": "Abstract: An infinite cylinder containing a fluid in solid | ||
19 | body rotation (SBR) is impulsively stopped. The decay and | 19 | body rotation (SBR) is impulsively stopped. The decay and | ||
20 | self-organisation of the initial SBR due to the forming boundary layer | 20 | self-organisation of the initial SBR due to the forming boundary layer | ||
21 | and multiple transitions is addressed by means of direct numerical | 21 | and multiple transitions is addressed by means of direct numerical | ||
22 | simulations for a wide range of Reynolds numbers. The flow undergoes | 22 | simulations for a wide range of Reynolds numbers. The flow undergoes | ||
23 | five distinct flow stages during its decay, which are characterised by | 23 | five distinct flow stages during its decay, which are characterised by | ||
24 | means of statistical evaluation. This database features statistics of | 24 | means of statistical evaluation. This database features statistics of | ||
25 | four different spin-down simulations at different | 25 | four different spin-down simulations at different | ||
26 | $Re$.\r\nTechnicalRemarks: | 26 | $Re$.\r\nTechnicalRemarks: | ||
27 | --------------------------------------------------------\r\nStatistics | 27 | --------------------------------------------------------\r\nStatistics | ||
28 | on spin down for different | 28 | on spin down for different | ||
29 | ----------------------------------------------------------\r\n\r\nthis | 29 | ----------------------------------------------------------\r\n\r\nthis | ||
30 | database features:\r\n\r\n* statistics of four different spin-down | 30 | database features:\r\n\r\n* statistics of four different spin-down | ||
31 | simulations at different Re=\\Omega R^2/\\nu;\r\n\r\n* global | 31 | simulations at different Re=\\Omega R^2/\\nu;\r\n\r\n* global | ||
32 | volume-averaged data for turbulent kinetic engery (k), mean kinetic | 32 | volume-averaged data for turbulent kinetic engery (k), mean kinetic | ||
33 | energy (K) and their budget equations;\r\n\r\n* temporal evolution of | 33 | energy (K) and their budget equations;\r\n\r\n* temporal evolution of | ||
34 | 1D quantities such as wall-shear stress, boundary-layer | 34 | 1D quantities such as wall-shear stress, boundary-layer | ||
35 | thickness;\r\n\r\n* temporal evolution of spatially (over z and \\phi) | 35 | thickness;\r\n\r\n* temporal evolution of spatially (over z and \\phi) | ||
36 | averaged bulk data such as mean velocity, Reynolds-stresses | 36 | averaged bulk data such as mean velocity, Reynolds-stresses | ||
37 | etc.;\r\n\r\n* terms of the k and K budget equations as function of t | 37 | etc.;\r\n\r\n* terms of the k and K budget equations as function of t | ||
38 | and | 38 | and | ||
39 | -----------------------------------------------\r\n\r\nAcknowledgment: | 39 | -----------------------------------------------\r\n\r\nAcknowledgment: | ||
40 | \r\n\r\nThe financial support by the German Research Foundation (DFG) | 40 | \r\n\r\nThe financial support by the German Research Foundation (DFG) | ||
41 | under Priority Programme SPP-1881 is greatly acknowledged. | 41 | under Priority Programme SPP-1881 is greatly acknowledged. | ||
42 | ---------------------------------------------------\r\nReferences:\r\n | 42 | ---------------------------------------------------\r\nReferences:\r\n | ||
43 | \r\nF. Kaiser, B. Frohnapfel, R. Ostilla-Monico, J. Kriegseis, D. E. | 43 | \r\nF. Kaiser, B. Frohnapfel, R. Ostilla-Monico, J. Kriegseis, D. E. | ||
44 | Rival and D. Gatti (2019)\r\n\"Flow stages during vortex decay in an | 44 | Rival and D. Gatti (2019)\r\n\"Flow stages during vortex decay in an | ||
45 | impulsively stopped rotating cylinder\",\r\nJournal of Fluid | 45 | impulsively stopped rotating cylinder\",\r\nJournal of Fluid | ||
46 | Mechanics, (to be submitted)\r\n | 46 | Mechanics, (to be submitted)\r\n | ||
47 | --------------------------------------------------\r\n\r\nContent:\r\n | 47 | --------------------------------------------------\r\n\r\nContent:\r\n | ||
48 | \r\nfolders for different Re: Re3000, Re6000, Re12000, | 48 | \r\nfolders for different Re: Re3000, Re6000, Re12000, | ||
49 | Re28000\r\n\r\neach folder contains:\r\ntot.dat --> | 49 | Re28000\r\n\r\neach folder contains:\r\ntot.dat --> | ||
50 | 1D data such as wall-velocity, boundary-layer thickness, \r\n | 50 | 1D data such as wall-velocity, boundary-layer thickness, \r\n | ||
51 | volume average K, volume average k etc.\r\n | 51 | volume average K, volume average k etc.\r\n | ||
52 | \r\nt.dat --> time steps (spacing dt increases | 52 | \r\nt.dat --> time steps (spacing dt increases | ||
53 | during late stages of decay)\r\n\r\nr.dat --> | 53 | during late stages of decay)\r\n\r\nr.dat --> | ||
54 | radial positions of the grid\r\n\r\nbulk --> | 54 | radial positions of the grid\r\n\r\nbulk --> | ||
55 | folder: contains dat files for non-zero bulk quantities as functions | 55 | folder: contains dat files for non-zero bulk quantities as functions | ||
56 | of r and t.\r\n mean velocity, mean | 56 | of r and t.\r\n mean velocity, mean | ||
57 | vorticity, velocity in wall units, Reynolds stresses\r\n | 57 | vorticity, velocity in wall units, Reynolds stresses\r\n | ||
58 | \r\nmke --> folder: contains terms of the K | 58 | \r\nmke --> folder: contains terms of the K | ||
59 | budget equation as functions of r and t:\r\n | 59 | budget equation as functions of r and t:\r\n | ||
60 | K, production, dissipation, turbulent transport, viscous transport\r\n | 60 | K, production, dissipation, turbulent transport, viscous transport\r\n | ||
61 | \r\ntke --> folder: contains terms of the TKE | 61 | \r\ntke --> folder: contains terms of the TKE | ||
62 | budget equation as functions of r and t:\r\n | 62 | budget equation as functions of r and t:\r\n | ||
63 | k, production, dissipation, turbulent transport, viscous transport, | 63 | k, production, dissipation, turbulent transport, viscous transport, | ||
64 | pressure diffusion\r\n\r\n\r\nRefer to the readme files in each | 64 | pressure diffusion\r\n\r\n\r\nRefer to the readme files in each | ||
65 | subdirectory for further information on each database. | 65 | subdirectory for further information on each database. | ||
66 | --------------------------------\r\n\r\nChangelog:\r\n\r\nMay-08-2019: | 66 | --------------------------------\r\n\r\nChangelog:\r\n\r\nMay-08-2019: | ||
67 | database | 67 | database | ||
68 | --------------------------------------------------------------\r\n\r\n | 68 | --------------------------------------------------------------\r\n\r\n | ||
69 | frieder.kaiser@kit.edu\r\n | 69 | frieder.kaiser@kit.edu\r\n | ||
70 | davide.gatti@kit.edu\r\n | 70 | davide.gatti@kit.edu\r\n | ||
71 | bettina.frohnapfel@kit.edu", | 71 | bettina.frohnapfel@kit.edu", | ||
72 | "num_resources": 0, | 72 | "num_resources": 0, | ||
73 | "num_tags": 4, | 73 | "num_tags": 4, | ||
74 | "orcid": "", | 74 | "orcid": "", | ||
75 | "organization": { | 75 | "organization": { | ||
76 | "approval_status": "approved", | 76 | "approval_status": "approved", | ||
77 | "created": "2023-01-12T13:30:23.238233", | 77 | "created": "2023-01-12T13:30:23.238233", | ||
78 | "description": "RADAR (Research Data Repository) is a | 78 | "description": "RADAR (Research Data Repository) is a | ||
79 | cross-disciplinary repository for archiving and publishing research | 79 | cross-disciplinary repository for archiving and publishing research | ||
80 | data from completed scientific studies and projects. The focus is on | 80 | data from completed scientific studies and projects. The focus is on | ||
81 | research data from subjects that do not yet have their own | 81 | research data from subjects that do not yet have their own | ||
82 | discipline-specific infrastructures for research data management. ", | 82 | discipline-specific infrastructures for research data management. ", | ||
83 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 83 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
84 | "image_url": "radar-logo.svg", | 84 | "image_url": "radar-logo.svg", | ||
85 | "is_organization": true, | 85 | "is_organization": true, | ||
86 | "name": "radar", | 86 | "name": "radar", | ||
87 | "state": "active", | 87 | "state": "active", | ||
88 | "title": "RADAR", | 88 | "title": "RADAR", | ||
89 | "type": "organization" | 89 | "type": "organization" | ||
90 | }, | 90 | }, | ||
91 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 91 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
92 | "private": false, | 92 | "private": false, | ||
93 | "production_year": "2019", | 93 | "production_year": "2019", | ||
94 | "publication_year": "2023", | 94 | "publication_year": "2023", | ||
95 | "publishers": [ | 95 | "publishers": [ | ||
96 | { | 96 | { | ||
97 | "publisher": "Karlsruhe Institute of Technology" | 97 | "publisher": "Karlsruhe Institute of Technology" | ||
98 | } | 98 | } | ||
99 | ], | 99 | ], | ||
100 | "relationships_as_object": [], | 100 | "relationships_as_object": [], | ||
101 | "relationships_as_subject": [], | 101 | "relationships_as_subject": [], | ||
102 | "repository_name": "RADAR (Research Data Repository)", | 102 | "repository_name": "RADAR (Research Data Repository)", | ||
103 | "resources": [], | 103 | "resources": [], | ||
104 | "services_used_list": "", | 104 | "services_used_list": "", | ||
105 | "source_metadata_created": "2023", | 105 | "source_metadata_created": "2023", | ||
106 | "source_metadata_modified": "", | 106 | "source_metadata_modified": "", | ||
107 | "state": "active", | 107 | "state": "active", | ||
108 | "subject_areas": [ | 108 | "subject_areas": [ | ||
109 | { | 109 | { | ||
110 | "subject_area_additional": "", | 110 | "subject_area_additional": "", | ||
111 | "subject_area_name": "Engineering" | 111 | "subject_area_name": "Engineering" | ||
112 | } | 112 | } | ||
113 | ], | 113 | ], | ||
114 | "tags": [ | 114 | "tags": [ | ||
115 | { | 115 | { | ||
116 | "display_name": "anisotropic turbulence", | 116 | "display_name": "anisotropic turbulence", | ||
117 | "id": "73e9ab31-82ae-473c-8d37-f8ecad984f03", | 117 | "id": "73e9ab31-82ae-473c-8d37-f8ecad984f03", | ||
118 | "name": "anisotropic turbulence", | 118 | "name": "anisotropic turbulence", | ||
119 | "state": "active", | 119 | "state": "active", | ||
120 | "vocabulary_id": null | 120 | "vocabulary_id": null | ||
121 | }, | 121 | }, | ||
122 | { | 122 | { | ||
123 | "display_name": "curved-wall boundary layers", | 123 | "display_name": "curved-wall boundary layers", | ||
124 | "id": "d14f02a0-9afe-496a-9eb8-8acfb2e9304f", | 124 | "id": "d14f02a0-9afe-496a-9eb8-8acfb2e9304f", | ||
125 | "name": "curved-wall boundary layers", | 125 | "name": "curved-wall boundary layers", | ||
126 | "state": "active", | 126 | "state": "active", | ||
127 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
128 | }, | 128 | }, | ||
129 | { | 129 | { | ||
130 | "display_name": "transition to turbulence", | 130 | "display_name": "transition to turbulence", | ||
131 | "id": "abc971cc-0c5f-4e63-8da5-3055a2153787", | 131 | "id": "abc971cc-0c5f-4e63-8da5-3055a2153787", | ||
132 | "name": "transition to turbulence", | 132 | "name": "transition to turbulence", | ||
133 | "state": "active", | 133 | "state": "active", | ||
134 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
135 | }, | 135 | }, | ||
136 | { | 136 | { | ||
137 | "display_name": "turbulent decay", | 137 | "display_name": "turbulent decay", | ||
138 | "id": "056e1492-3571-4f0b-b215-cdebddd80caf", | 138 | "id": "056e1492-3571-4f0b-b215-cdebddd80caf", | ||
139 | "name": "turbulent decay", | 139 | "name": "turbulent decay", | ||
140 | "state": "active", | 140 | "state": "active", | ||
141 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
142 | } | 142 | } | ||
143 | ], | 143 | ], | ||
144 | "title": "Dataset to \"flow stages during vortex decay in an | 144 | "title": "Dataset to \"flow stages during vortex decay in an | ||
145 | impulsively stopped rotating cylinder\"", | 145 | impulsively stopped rotating cylinder\"", | ||
146 | "type": "vdataset", | 146 | "type": "vdataset", | ||
147 | "url": "https://doi.org/10.35097/1173" | 147 | "url": "https://doi.org/10.35097/1173" | ||
148 | } | 148 | } |