Chemical and isotope compositions of interstitial water in sediments from Mediterranean basin at DSDP Sites 42-372 and 42-374

The Br/Cl, Li/Cl and B/Cl ratios and boron isotope compositions of hypersaline pore fluids from DSDP Sites 372 and 374 were measured in an attempt to evaluate the origin of the brines. In Site 374 the relationships between the Cl concentrations (up to 5000 mM) and Br/Cl (~0.012), Na/Cl (as low as 0.1), B/Cl (0.0025), and d11B values (43-55 per mil ) of the deep pore water between 380 and 405 mbsf, located within the Messinian sediments, reflect remnants of ~65-fold evaporated sea water. The original evaporated sea water was modified by: (1) dilution with overlying or less saline water by about 30%; and (2) slight dissolution of NaCl evaporites. The variations in d11B show a continuous increase in d11B values with depth in Site 374, up to 66.7 per mil at a depth of 300 mbsf (Upper Pliocene marl sediments). The conspicuous 11B enrichment trend is consistent with elemental boron depletion, which was calculated from the expected boron concentrations of evaporated sea water with corresponding Br/Cl and Na/Cl ratios. Li/Cl variations also show a depletion of Li relative to evaporated sea water. The apparent depletions of B and Li, as well as the 11B enrichment, reflect uptake of these elements by clay minerals at low water/sediment ratios.

Data and Resources

This dataset has no data

Cite this as

Vengosh, Avner, Gieskes, Joris M, Mahn, Chris L (2000). Dataset: Chemical and isotope compositions of interstitial water in sediments from Mediterranean basin at DSDP Sites 42-372 and 42-374. https://doi.org/10.1594/PANGAEA.704810

DOI retrieved: 2000

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.704810
Author Vengosh, Avner
Given Name Avner
Family Name Vengosh
More Authors
Gieskes, Joris M
Mahn, Chris L
Source Creation 2000
Publication Year 2000
Resource Type application/zip - filename: Vengosh_2000
Subject Areas
Name: Chemistry

Name: Lithosphere

Related Identifiers
Title: New evidence for the origin of hypersaline pore fluids in the Mediterranean basin
Identifier: https://doi.org/10.1016/S0009-2541(99)00131-X
Type: DOI
Relation: IsSupplementTo
Year: 2000
Source: Chemical Geology
Authors: Vengosh Avner , Gieskes Joris M , Mahn Chris L .