Titanomagnetites separated from 15 different rock samples (including ocean-floor basalts from DSDP Legs 37, 45 and 46) were analyzed together with whole-rock samples by instrumental neutron-activation analysis for Sc, Cr, Co, Zn, Hf, Ta, Th and the REE La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb and Lu. In titanomagnetities from ocean-floor basalts and some other rocks, REE are enriched with respect to the whole-rock composition by factors of between 1.5 and 3 for light REE and between 1.0 and 1.9 for heavy REE; that is, REE with larger ionic radii are preferentially incorporated into the magnetite lattice. Three magnetite samples are REE depleted. Their whole-rock samples contain P in appreciable amounts, so apatite, an important REE-accumulating mineral, could have captured REE to some extent. All titanomagnetites show a marked negative Eu anomaly, this is most probably caused by discrimination of Eu(2+) from the magnetite lattice. Co, Zn, Hf and Ta are significantly enriched in magnetites. The distribution behaviour of Sc and Cr is masked chiefly by the crystallization of clinopyroxene and therefore is not easy to estimate. Ulvöspinel contents of about 70% for the titanomagnetites from ocean-floor basalts were estimated from qualitative microprobe analysis. Ulvöspinel contents of all other samples varied in a wide range from 20% to about 90%. No correlation could be observed between this and the REE contents of the magnetites. Ilmenite exsolution lamellae could only be observed in titanomagnetites from a doleritic basalt from Leg 45.