The Pliocene-Pleistocene history of CaCO3 preservation in the central equatorial Pacific is reconstructed from a suite of deep-sea cores and is compared to fluctuations in global ice volume inferred from delta18O records. The results are highlighted by: (1) a strong covariation between CaCO3 preservation and ice volume over 104 to 106 year time scales; (2) a long-term increase in ice volume and CaCO3 preservation since 3.9 Ma demonstrated by a deepening of the lysocline and the carbonate critical depth; (3) a dramatic shift to greater CaCO3 preservation at 2.9 Ma; (4) distinctive ice-volume growth and CaCO3 preservation events at 2.4 Ma, which are associated with the significant intensification of northern hemisphere glaciation; (5) a mid-Pleistocene transition to 100-kyr cyclicity in both CaCO3 preservation and ice volume; and (6) a 600-kyr Brunhes dissolution cycle superimposed on the late Pleistocene glacial/interglacial 100-kyr cycles. CaCO3 preservation primarily reflects the carbonate chemistry of abyssal waters and is controlled by long-term (106 year) and short-term (104 to 105 year) biogeochemical cycling and by distinct paleoclimatic events. We attribute the long-term increase in CaCO3 preservation primarily to a fractionation of CaCO3 deposition from continental shelf to ocean basin, and secondarily to a gradual rise in the riverine and glaciofluvial flux of Ca++. On shorter time scales, the fluctuations in CaCO3 preservation slightly lag ice volume fluctuations and are attributed to climatically induced changes in the circulation and chemistry of Pacific deep water.