A high-resolution (~4-5cm/kyr) giant piston core record (MD962085) retrieved during an IMAGES II-NAUSICAA cruise from the continental slope of the southeast Atlantic Ocean reveals striking variations in planktonic foraminifer faunal abundances and sea-surface temperatures (SST) during the past 600 000 yr. The location and high-quality sedimentary record of the core provide a good opportunity to assess the variability of the Benguela Current system and associated important features of the ocean-climate system in the southeast Atlantic. The planktonic foraminifer faunal abundances of the core are dominated by three assemblages: (1) Neogloboquadrina pachyderma (right coiling) + Neogloboquadrina dutertrei, (2) Globigerina bulloides, and (3) Globorotalia inflata. The assemblage of N. pachyderma (right coiling) + N. dutertrei shows distinctive abundance changes which are nearly in-phase with glacial-interglacial variations. The high abundances of this assemblage are associated with major glacial conditions, possibly representing low SST/high nutrient level conditions in the southwestern Africa margin. In contrast, the G. bulloides and G. inflata assemblages show greater high-frequency abundance change patterns, which are not parallel to the glacial-interglacial changes. These patterns may indicate rapid oceanic frontal movements from the south, and a rapid change in the intensity of the Benguela upwelling system from the east. A single episode of maximum abundances of a polar water species N. pachyderma (left coiling) occurred in the beginning of stage 9 (~340-330 kyr). The event of the maximum occurrence of this species shown in this record may indicate instability in the Benguela coastal upwelling, or the Antarctic polar front zone position. A winter season SST estimate using transfer function techniques for this record shows primarily glacial-interglacial variations. The SST is maximal during the transitions from the major glacial to interglacial stages (Terminations I, II, IV, V), and is associated with the abundance maxima of a warm water species indicator Globigerinoides ruber. Cross-spectral analyses of the SST record and the SPECMAP stack reveal statistically significant concentrations of variance and coherencies in three major orbital frequency bands. The SST precedes changes in the global ice volume in all orbital frequency bands, indicating a dominant southern Hemispheric climate effect over the Benguela Current region in the southeast Atlantic.