Approximately one thousand sediment samples from ODP Site 1123 on the Chatham Rise, east of New Zealand, have been examined for inorganic elemental concentrations. ODP 1123 provides a record of sediment drift deposition under the Deep Western Boundary Current, the main inflow of deep water to the Pacific Ocean since the Early Oligocene, though a major hiatus spans the late Early Oligocene to the Early Miocene. Normalisation of the elemental concentrations by aluminium was used to allow for the effects of variable carbonate dilution. The elemental ratios were used as proxies for sediment composition and as palaeoceanographic indices. The samples were collected at a resolution designed to sample adequately any variation in elemental ratios at the scale of the Milankovitch orbital cycles. The sampled intervals span the Early Oligocene, Early Miocene, mid-Miocene and Late Pleistocene to Recent. Anomalous Si/Al, K/Al, Ti/Al values in the upper Pleistocene section, often associated with horizons of low carbonate, are attributed to tephras derived from North Island. Not all of the tephras detected geochemically had been detected visually in the cores. A total of 37 tephra events between 1.17 Ma BP and the present are recognised based on this and the shipboard investigations. The tephra events cluster at intervals of approximately 326 000 years (326 ka) perhaps due to variations in eruption frequency on North Island and/or to variations in the regional palaeowind intensity and direction. In the Late Pleistocene to Recent P/Al (inferred nutrient availability), percent calcium carbonate (%CaCO3) and Ba/Al (inferred productivity) varied regularly at a period of 40 000 years with these factors lagging minimum global ice volumes (interglacials). During the mid-Miocene CaCO3, Ba/Al, P/Al and Si/Al all gradually increased with %CaCO3 and P/Al showing regular 138 000-yr cyclicity and Ba/Al showing 44-ka cyclicity. Inferred productivity (Ba/Al) may have been rising in association with increasing nutrient availability (P/Al) at the same time as increased vigour of the Deep Western Boundary Current that was connected to a period of rapid ice-sheet growth in Antarctica. In the Early Miocene P/Al and Si/Al were much higher than subsequently and both %CaCO3 and P/Al exhibited 131 000-yr cycles. By far the highest nutrient levels and inferred productivity at this site apparently occurred during the Early Oligocene as revealed by long-term changes in P/Al and Si/Al. A progressive rise in K/Al, but stable Ti/Al from the Early Oligocene to the Recent probably indicates increased proportions of illite in the clay mineral fraction of the drift sediments caused by increased flux of debris from the Southern Alps.