Rare earth elements of ROV sample GeoB12338-2 from the Makran accretionary complex

Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.

Data and Resources

This dataset has no data

Cite this as

Himmler, Tobias, Bach, Wolfgang, Bohrmann, Gerhard, Peckmann, Jörn (2010). Dataset: Rare earth elements of ROV sample GeoB12338-2 from the Makran accretionary complex. https://doi.org/10.1594/PANGAEA.753249

DOI retrieved: 2010

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.753249
Author Himmler, Tobias
Given Name Tobias
Family Name Himmler
More Authors
Bach, Wolfgang
Bohrmann, Gerhard
Peckmann, Jörn
Source Creation 2010
Publication Year 2010
Resource Type application/zip - filename: Himmler_2010
Subject Areas
Name: Chemistry

Name: Lithosphere

Related Identifiers
Title: Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis
Identifier: https://doi.org/10.1016/j.chemgeo.2010.07.015
Type: DOI
Relation: IsSupplementTo
Year: 2010
Source: Chemical Geology
Authors: Himmler Tobias , Bach Wolfgang , Bohrmann Gerhard , Peckmann Jörn .