Seawater carbonate chemistry, length, mass and otholith development of spiny damselfish Acanthochromis polyacanthus during experiments, 2011

Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes

Data and Resources

This dataset has no data

Cite this as

Munday, Philip L, Gagliano, Monica, Donelson, Jennifer M, Dixon, Danielle L, Thorrold, Simon R (2011). Dataset: Seawater carbonate chemistry, length, mass and otholith development of spiny damselfish Acanthochromis polyacanthus during experiments, 2011. https://doi.org/10.1594/PANGAEA.763912

DOI retrieved: 2011

Additional Info

Field Value
Imported on November 29, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.763912
Author Munday, Philip L
Given Name Philip L
Family Name Munday
More Authors
Gagliano, Monica
Donelson, Jennifer M
Dixon, Danielle L
Thorrold, Simon R
Source Creation 2011
Publication Year 2011
Resource Type text/tab-separated-values - filename: C_Chem_computation_Munday_2011_MEPS
Subject Areas
Name: BiologicalClassification

Name: Biosphere

Name: Chemistry

Name: Ecology

Name: Oceans

Related Identifiers
Title: Ocean acidification does not affect the early life history development of a tropical marine fish
Identifier: https://doi.org/10.3354/meps08990
Type: DOI
Relation: IsSupplementTo
Year: 2011
Source: Marine Ecology Progress Series
Authors: Munday Philip L , Gagliano Monica , Donelson Jennifer M , Dixon Danielle L , Thorrold Simon R .