Seawater carbonate chemistry and biological processes of oysters Crassostrea virginica during experiments, 2010

Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.

Data and Resources

This dataset has no data

Cite this as

Beniash, Elia, Ivanina, Anna, Lieb, Nicholas S, Kurochkin, Ilya, Sokolova, Inna A (2010). Dataset: Seawater carbonate chemistry and biological processes of oysters Crassostrea virginica during experiments, 2010. https://doi.org/10.1594/PANGAEA.767583

DOI retrieved: 2010

Additional Info

Field Value
Imported on November 29, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.767583
Author Beniash, Elia
Given Name Elia
Family Name Beniash
More Authors
Ivanina, Anna
Lieb, Nicholas S
Kurochkin, Ilya
Sokolova, Inna A
Source Creation 2010
Publication Year 2010
Resource Type text/tab-separated-values - filename: C_chem_computation_Beniash_2010_MEPS
Subject Areas
Name: BiologicalClassification

Name: Biosphere

Name: Chemistry

Name: Ecology

Name: Oceans

Related Identifiers
Title: Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica
Identifier: https://doi.org/10.3354/meps08841
Type: DOI
Relation: IsSupplementTo
Year: 2010
Source: Marine Ecology Progress Series
Authors: Beniash Elia , Ivanina Anna , Lieb Nicholas S , Kurochkin Ilya , Sokolova Inna A .