Seawater carbonate chemistry, growth rate and PIC and POC production during experiments with Emiliania huxleyi (B92/11), 2011

The coccolithophore Emiliania huxleyi was cultured under a broad range of carbonate chemistry conditions to distinguish the effects of individual carbonate system parameters on growth, primary production, and calcification. In the first experiment, alkalinity was kept constant and the fugacity of CO2(fCO2) varied from 2 to 600 Pa (1Pa ~ 10 µatm). In the second experiment, pH was kept constant (pHfree = 8) with fCO2 varying from 4 to 370 Pa. Results of the constant-alkalinity approach revealed physiological optima for growth, calcification, and organic carbon production at fCO2 values of ~20Pa, ~40 Pa, and ~80 Pa, respectively. Comparing this with the constant-pH approach showed that growth and organic carbon production increased similarly from low to intermediate CO2 levels but started to diverge towards higher CO2 levels. In the high CO2 range, growth rates and organic carbon production decreased steadily with declining pH at constant alkalinity while remaining consistently higher at constant pH. This suggests that growth and organic carbon production rates are directly related to CO2 at low (sub-saturating) concentrations, whereas towards higher CO2 levels they are adversely affected by the associated decrease in pH. A pH dependence at high fCO2 is also indicated for calcification rates, while the key carbonate system parameter determining calcification at low fCO2 remains unclear. These results imply that key metabolic processes in coccolithophores have their optima at different carbonate chemistry conditions and are influenced by different parameters of the carbonate system at both sides of the optimum.

Data and Resources

This dataset has no data

Cite this as

Bach, Lennart Thomas, Riebesell, Ulf, Schulz, Kai Georg (2011). Dataset: Seawater carbonate chemistry, growth rate and PIC and POC production during experiments with Emiliania huxleyi (B92/11), 2011. https://doi.org/10.1594/PANGAEA.771288

DOI retrieved: 2011

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.771288
Author Bach, Lennart Thomas
Given Name Lennart Thomas
Family Name Bach
More Authors
Riebesell, Ulf
Schulz, Kai Georg
Source Creation 2011
Publication Year 2011
Resource Type text/tab-separated-values - filename: C-chem-compilation_Bach_2011
Subject Areas
Name: BiologicalClassification

Name: Chemistry

Name: Oceans

Related Identifiers
Title: Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi
Identifier: https://doi.org/10.4319/lo.2011.56.6.2040
Type: DOI
Relation: IsSupplementTo
Year: 2011
Source: Limnology and Oceanography
Authors: Bach Lennart Thomas , Riebesell Ulf , Schulz Kai Georg .