Geochemistry and radiogenic isotopes of ODP Hole 157-953C lavas

The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.

Data and Resources

This dataset has no data

Cite this as

Gurenko, Andrey A, Hoernle, Kaj, Sobolev, Alexander V, Hauff, Folkmar, Schmincke, Hans-Ulrich (2010). Dataset: Geochemistry and radiogenic isotopes of ODP Hole 157-953C lavas. https://doi.org/10.1594/PANGAEA.772733

DOI retrieved: 2010

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.772733
Author Gurenko, Andrey A
Given Name Andrey A
Family Name Gurenko
More Authors
Hoernle, Kaj
Sobolev, Alexander V
Hauff, Folkmar
Schmincke, Hans-Ulrich
Source Creation 2010
Publication Year 2010
Resource Type application/zip - filename: Gurenko_2010
Subject Areas
Name: Chemistry

Name: Lithosphere

Related Identifiers
Title: Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr–Nd–Pb isotopes
Identifier: https://doi.org/10.1007/s00410-009-0448-8
Type: DOI
Relation: IsSupplementTo
Year: 2010
Source: Contributions to Mineralogy and Petrology
Authors: Gurenko Andrey A , Hoernle Kaj , Sobolev Alexander V , Hauff Folkmar , Schmincke Hans-Ulrich .