Sedimentological, geochemical, micropaleontological and rock magnetic proxies of sediment core GeoB6211-2

Surface currents and sediment distribution of the SE South American upper continental margin are under influence of the South American Monsoon System (SAMS) and the Southern Westerly Wind Belt (SWWB). Both climatic systems determine the meridional position of the Subtropical Shelf Front (STSF) and probably also of the Brazil-Malvinas Confluence (BMC). We reconstruct the changing impact of the SAMS and the SWWB on sediment composition at the upper Rio Grande Cone off southern Brazil during the last 14 cal kyr combining sedimentological, geochemical, micropaleontological and rock magnetic proxies of marine sediment core GeoB 6211-2. Sharp reciprocal changes in ferri- and paramagnetic mineral content and prominent grain-size shifts give strong clues to systematic source changes and transport modes of these mostly terrigenous sediments. Our interpretations support the assumption that the SAMS over SE South America was weaker than today during most of the Late Glacial and entire Early Holocene, while the SWWB was contracted to more southern latitudes, resembling modern austral summer-like conditions. In consequence, the STSF and the BMC were driven to more southern positions than today's, favoring the deposition of Fe-rich but weakly magnetic La Plata River silts at the Rio Grande Cone. During the Mid Holocene, the northern boundary of the SWWB migrated northward, while the STSF reached its northernmost position of the last 14 cal kyr and the BMC most likely arrived at its modern position. This shift enabled the transport of Antarctic diatoms and more strongly magnetic Argentinean shelf sands to the Rio Grande Cone, while sediment contributions from the La Plata River became less important. During the Late Holocene, the modern El Niño Southern Oscillation set in and the SAMS and the austral tradewinds intensified, causing a southward shift of the STSF to its modern position. This reinforced a significant deposition of La Plata River silts at the Rio Grande Cone. These higher magnetic silts with intermediate Fe contents mirror the modern more humid terrestrial climatic conditions over SE South America.

Data and Resources

This dataset has no data

Cite this as

Razik, Sebastian, Chiessi, Cristiano Mazur, Romero, Oscar E, von Dobeneck, Tilo (2013). Dataset: Sedimentological, geochemical, micropaleontological and rock magnetic proxies of sediment core GeoB6211-2. https://doi.org/10.1594/PANGAEA.805136

DOI retrieved: 2013

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.805136
Author Razik, Sebastian
Given Name Sebastian
Family Name Razik
More Authors
Chiessi, Cristiano Mazur
Romero, Oscar E
von Dobeneck, Tilo
Source Creation 2013
Publication Year 2013
Resource Type application/zip - filename: Razik_2012
Subject Areas
Name: LandSurface

Name: Lithosphere

Name: Paleontology

Related Identifiers
Title: Interaction of the South American Monsoon System and the Southern Westerly Wind Belt during the last 14 kyr
Identifier: https://doi.org/10.1016/j.palaeo.2012.12.022
Type: DOI
Relation: IsSupplementTo
Year: 2013
Source: Palaeogeography, Palaeoclimatology, Palaeoecology
Authors: Razik Sebastian , Chiessi Cristiano Mazur , Romero Oscar E , von Dobeneck Tilo .

Title: Carbon and nitrogen data of sediment core GeoB6211-2
Identifier: https://doi.org/10.1594/PANGAEA.137054
Type: DOI
Relation: References
Year: 2004
Source: Department of Geosciences, Bremen University
Authors: Müller Peter J , Müller Peter J .

Title: Density and water content of sediment core GeoB6211-2
Identifier: https://doi.org/10.1594/PANGAEA.137022
Type: DOI
Relation: References
Year: 2004
Source: Department of Geosciences, Bremen University
Authors: Müller Peter J , Müller Peter J .