Growth, survival, gene expression, microbiota and tryptic activity during feeding of Scophthalmus maximus first feeding larvae with beta-glucan (MacroGard)

Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, beta-glucan (MacroGard®) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast beta-1,3/1,6-glucan in form of MacroGard® at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, trypsin activity and size measurements. Along with the feeding of beta-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard® fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by beta-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-alpha and il-1beta was observed. We conclude that the administration of beta-glucan induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot.

Data and Resources

This dataset has no data

Cite this as

Miest, Joanna, Arndt, Carmen, Adamek, Mikolaj, Steinhagen, Dieter, Reusch, Thorsten B H (2015). Dataset: Growth, survival, gene expression, microbiota and tryptic activity during feeding of Scophthalmus maximus first feeding larvae with beta-glucan (MacroGard). https://doi.org/10.1594/PANGAEA.856090

DOI retrieved: 2015

Additional Info

Field Value
Imported on November 29, 2024
Last update November 29, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.856090
Author Miest, Joanna
Given Name Joanna
Family Name Miest
More Authors
Arndt, Carmen
Adamek, Mikolaj
Steinhagen, Dieter
Reusch, Thorsten B H
Source Creation 2015
Publication Year 2015
Resource Type application/zip - filename: Miest_2016
Subject Areas
Name: Biosphere

Name: Fisheries

Name: Oceans

Related Identifiers
Title: Dietary beta-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota
Identifier: https://doi.org/10.1016/j.fsi.2015.11.013
Type: DOI
Relation: IsSupplementTo
Year: 2016
Source: Fish & Shellfish Immunology
Authors: Miest Joanna , Arndt Carmen , Adamek Mikolaj , Steinhagen Dieter , Reusch Thorsten B H .