Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15

Using the Community Climate System Model version 3 (CCSM3) including a dynamic global vegetation model, a set of 13 time slice experiments was carried out to study global climate variability between and within the Quaternary interglacials of Marine Isotope Stages (MISs) 1, 5, 11, 13, and 15. The selection of interglacial time slices was based on different aspects of inter- and intra-interglacial variability and associated astronomical forcing. The different effects of obliquity, precession, and greenhouse gas (GHG) forcing on global surface temperature and precipitation fields are illuminated. In most regions seasonal surface temperature anomalies can largely be explained by local insolation anomalies induced by the astronomical forcing. Climate feedbacks, however, may modify the surface temperature response in specific regions, most pronounced in the monsoon domains and the polar oceans. GHG forcing may also play an important role for seasonal temperature anomalies, especially at high latitudes and early Brunhes interglacials (MIS 13 and 15) when GHG concentrations were much lower than during the later interglacials. High- versus low-obliquity climates are generally characterized by strong warming over the Northern Hemisphere extratropics and slight cooling in the tropics during boreal summer. During boreal winter, a moderate cooling over large portions of the Northern Hemisphere continents and a strong warming at high southern latitudes is found. Beside the well-known role of precession, a significant role of obliquity in forcing the West African monsoon is identified. Other regional monsoon systems are less sensitive or not sensitive at all to obliquity variations during interglacials. Moreover, based on two specific time slices (394 and 615 ka), it is explicitly shown that the West African and Indian monsoon systems do not always vary in concert, challenging the concept of a global monsoon system on astronomical timescales. High obliquity can also explain relatively warm Northern Hemisphere high-latitude summer temperatures despite maximum precession around 495 ka (MIS 13). It is hypothesized that this obliquity-induced high-latitude warming may have prevented a glacial inception at that time.

Data and Resources

This dataset has no data

Cite this as

Rachmayani, Rima, Prange, Matthias, Schulz, Michael (2016). Dataset: Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. https://doi.org/10.1594/PANGAEA.860353

DOI retrieved: 2016

Additional Info

Field Value
Imported on November 30, 2024
Last update November 30, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.860353
Author Rachmayani, Rima
Given Name Rima
Family Name Rachmayani
More Authors
Prange, Matthias
Schulz, Michael
Source Creation 2016
Publication Year 2016
Resource Type application/zip - filename: Rachmayani_2016
Subject Areas
Name: Atmosphere

Name: Lithosphere

Related Identifiers
Title: Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15
Identifier: https://doi.org/10.5194/cp-12-677-2016
Type: DOI
Relation: IsSupplementTo
Year: 2016
Source: Climate of the Past
Authors: Rachmayani Rima , Prange Matthias , Schulz Michael .