Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene record from Walvis Ridge

Few astronomically calibrated high-resolution (<=5 kyr) climate records exist that span the Oligocene?Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ~13-Myr interval of the Oligo-Miocene (30.1?17.1 Ma) at high resolution (~3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ~3.4 m and ~0.9 m, which correspond to 405- and ~110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, d18O and d13C are interpreted to coincide with ~110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (~2.4-Myr) are marked by recurrent episodes of high-amplitude ~110-kyr d18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic d18O and especially d13C signals, are more pronounced during ~2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ~110-kyr d18O cycles and the ~1.2-Myr amplitude modulation of obliquity is not consistent through the Oligo-Miocene. Identification of these recurrent episodes at Walvis Ridge, and their pacing by the ~2.4-Myr eccentricity cycle, revises the current understanding of the main climate events of the Oligo-Miocene.

Data and Resources

This dataset has no data

Cite this as

Liebrand, Diederik, Beddow, Helen M, Lourens, Lucas Joost, Pälike, Heiko, Raffi, Isabella, Bohaty, Steven M, Hilgen, Frederik J, Saes, Mischa JM, Wilson, Paul A, van Dijk, Arnold E, Hodell, David A, Kroon, Dick, Huck, Claire E, Batenburg, Sietske J (2016). Dataset: Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene record from Walvis Ridge. https://doi.org/10.1594/PANGAEA.862589

DOI retrieved: 2016

Additional Info

Field Value
Imported on November 29, 2024
Last update November 29, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.862589
Author Liebrand, Diederik
Given Name Diederik
Family Name Liebrand
More Authors
Beddow, Helen M
Lourens, Lucas Joost
Pälike, Heiko
Raffi, Isabella
Bohaty, Steven M
Hilgen, Frederik J
Saes, Mischa JM
Wilson, Paul A
van Dijk, Arnold E
Hodell, David A
Kroon, Dick
Huck, Claire E
Batenburg, Sietske J
Source Creation 2016
Publication Year 2016
Resource Type application/zip - filename: Liebrand_2016
Subject Areas
Name: Geophysics

Related Identifiers
Title: Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264
Identifier: https://doi.org/10.1016/j.epsl.2016.06.007
Type: DOI
Relation: IsSupplementTo
Year: 2016
Source: Earth and Planetary Science Letters
Authors: Liebrand Diederik , Beddow Helen M , Lourens Lucas Joost , Pälike Heiko , Raffi Isabella , Bohaty Steven M , Hilgen Frederik J , Saes Mischa JM , Wilson Paul A , van Dijk Arnold E , Hodell David A , Kroon Dick , Huck Claire E , Batenburg Sietske J .