Pacific oyster survival, size and microsatellite data measured during infection experiments

The consequences of emerging marine diseases on the evolutionary trajectories of affected host populations in the marine realm are largely unexplored. Evolution in response to natural selection depends on the genetic variation of the traits under selection and the interaction of these traits with the environment (GxE). However, in the case of diseases, genotypes of pathogens add another dimension to this interaction. Therefore, the study of disease resistance needs to be extended to the interaction of host genotype, pathogen genotype and environment (GxGxE). In the present study we used a full-sib breeding design crossing two genetically differentiated populations of the Pacific oyster Crassostrea gigas (Thunberg, 1793), to determine the influence of host genotype, pathogen genotype and temperature on disease resistance. Based on a controlled infection experiment on two early life stages, i.e. D-larvae and Pediveliger larvae at elevated and ambient water temperatures we estimated disease resistance to allopatric and sympatric Vibrio sp. by measuring survival and growth within and between genetically differentiated oyster populations. In both populations survival was higher upon infection with sympatric Vibrio sp. indicating that disease resistance has a genetic basis and is dependent on host genotype. In addition we observed a significant GxGxE effect in D-larvae, where contrary to expectations, disease resistance was higher at warm than at cold temperatures. Using thermal reaction norms, we could further show, that disease resistance is an environment dependent trait with high plasticity, which indicates the potential for a fast acclimatization to changing environmental conditions. These population specific reaction norms disappeared in hybrid crosses between both populations which demonstrates that admixture between genetically differentiated populations can influence GxGxE interactions on larger scales.

Data and Resources

This dataset has no data

Cite this as

Wendling, Carolin Charlotte, Fabritzek, Armin Georg, Wegner, K Mathias (2016). Dataset: Pacific oyster survival, size and microsatellite data measured during infection experiments. https://doi.org/10.1594/PANGAEA.868904

DOI retrieved: 2016

Additional Info

Field Value
Imported on November 29, 2024
Last update November 29, 2024
License CC-BY-3.0
Source https://doi.org/10.1594/PANGAEA.868904
Author Wendling, Carolin Charlotte
Given Name Carolin Charlotte
Family Name Wendling
More Authors
Fabritzek, Armin Georg
Wegner, K Mathias
Source Creation 2016
Publication Year 2016
Resource Type application/zip - filename: Wendling_2016
Subject Areas
Name: Biosphere

Related Identifiers
Title: Population-specific genotype x genotype x environment interactions in bacterial disease of early life stages of Pacific oyster larvae
Identifier: https://doi.org/10.1111/eva.12452
Type: DOI
Relation: IsSupplementTo
Year: 2017
Source: Evolutionary Applications
Authors: Wendling Carolin Charlotte , Fabritzek Armin Georg , Wegner K Mathias .